concepts.language.ccg.learning.by_parsing#
- by_parsing(ccg, sentence, *, novel_words=None, candidate_syntax_types=None, syntax_searcher=None, syntax_searcher_kwargs=None, candidate_semantics=None, semantics_searcher=None, semantics_searcher_kwargs=None, bind_concepts=True)[source]#
Learn CCG lexicon entries from a sentence by trying to parse the sentence.
- Parameters:
ccg (CCG) – the CCG grammar.
novel_words (tuple | None) – the list of novel words to be learned. If not specified, the algorithm will detect all novel words in the sentence.
candidate_syntax_types (List[CCGSyntaxSearchResult] | None) – the list of candidate syntax types to be used for parsing. If not specified, the algorithm will use the syntax searcher to generate the candidate syntax types.
syntax_searcher (CCGSyntaxSearcherBase | None) – the syntax searcher to be used for generating candidate syntax types. If not specified, the algorithm will use the enumerative searcher.
syntax_searcher_kwargs (dict | None) – the keyword arguments for the syntax searcher.
candidate_semantics (List[CCGSemanticsSearchResult] | None) – the list of candidate semantics to be used for parsing. If not specified, the algorithm will use the semantics searcher to generate the candidate semantics.
semantics_searcher (CCGSemanticsSearcherBase | None) – the semantics searcher to be used for generating candidate semantics. If not specified, the algorithm will use the enumerative searcher.
semantics_searcher_kwargs (dict | None) – the keyword arguments for the semantics searcher.
bind_concepts (bool) – whether to bind concepts in the semantics. This will allow algorithm to invent novel concepts while learning.
- Returns:
The result of the learning process, as a list of
CCGLearningResult
.- Return type: