concepts.dm.pdsketch.regression_rule.RegressionRuleApplicationExpression#
- class RegressionRuleApplicationExpression[source]#
Bases:
object
An abstract regression rule grounding. For example, in
(regression-ontop ?x ?y)
where?x
and?y
are variables in the context.Methods
Attributes
The name of the regression rule.
The regression rule that is applied.
The arguments of the regression rule.
The maintain expressions of the regression rule.
The serializability of the regression rule.
The continuous serializability of the regression rule.
- __init__(regression_rule, arguments, maintains=None, serializability='strong', csp_serializability='none')[source]#
- Parameters:
regression_rule (RegressionRule)
arguments (Sequence[VariableExpression | UnnamedPlaceholder | ValueOutputExpression])
maintains (Sequence[ValueOutputExpression] | None)
serializability (SubgoalSerializability | str)
csp_serializability (SubgoalCSPSerializability | str)
- __new__(**kwargs)#
- ground(executor)[source]#
Ground the regression rule statement.
- Parameters:
executor (PDSketchExecutor)
- Return type:
- arguments: Tuple[VariableExpression | UnnamedPlaceholder | ValueOutputExpression, ...]#
The arguments of the regression rule.
- csp_serializability: SubgoalCSPSerializability#
The continuous serializability of the regression rule.
- maintains: Tuple[ValueOutputExpression, ...]#
The maintain expressions of the regression rule.
- regression_rule: RegressionRule#
The regression rule that is applied.
- serializability: SubgoalSerializability#
The serializability of the regression rule.