concepts.dm.crow.executors.crow_executor.CrowExecutor#
- class CrowExecutor[source]#
Bases:
TensorValueExecutorBase
Methods
check_constraint
(constraint[, state])check_eq_constraint
(dtype, x, y, target[, state])execute
(expression[, state, ...])Execute an expression.
get_bounded_variable
(variable)Get the value of a bounded variable.
Get the implementation of a function.
Check whether the executor has an implementation for a function.
new_bounded_variables
(bvdict)A context manager to add additional bounded variables to the executor.
parse
(string, *[, state, variables])Parse an expression.
register_function
(name, func)Register an implementation for a function to the executor.
register_function_implementation
(name, func)Register an implementation for a function.
Retrieve a bounded variable by its name.
set_parser
(parser)Set the parser for the executor.
update_effect_mode
(evaluation_mode[, ...])with_bounded_variables
(bvdict)A context manager to set the bounded variables for the executor.
with_csp
(csp)A context manager to temporarily set the CSP of the executor.
with_sgc
(sgc)A context manager to temporarily set the SGC of the executor.
with_state
([state])A context manager to temporarily set the state of the executor.
Attributes
The bounded variables for the execution.
The CSP that describes the constraints in past executions.
The domain of the executor.
A context variable indicating whether the current effect should be updated from the execution of the operator.
A context variable indicating whether the current effect should be updated from simulation, instead of the evaluation of expressions.
The implementations of functions, which is a mapping from function names to implementations.
Whether to execute the expression optimistically (i.e., treat all CSP constraints True).
The parser for the domain.
The Python object store.
The SGC (state-goal-constraints) context.
The state of the executor.
The value quantizer.
- __init__(domain, parser=None)[source]#
Initialize a Crow expression executor.
- Parameters:
domain (CrowDomain) – the domain of this executor.
parser (ParserBase | None) – the parser to be used. This argument is optional. If provided, the execute function can take strings as input.
- __new__(**kwargs)#
- check_constraint(constraint, state=None)#
- Parameters:
constraint (Constraint)
state (TensorState | None)
- check_eq_constraint(dtype, x, y, target, state=None)#
- Parameters:
dtype (TensorValueTypeBase)
x (TensorValue)
y (TensorValue)
target (bool)
state (TensorState | None)
- Return type:
- execute(expression, state=None, bounded_variables=None, csp=None, sgc=None, optimistic_execution=False)[source]#
Execute an expression.
- Parameters:
expression (Expression | str) – the expression to execute.
state (TensorState | None) – the state to use. If None, the current state of the executor will be used.
bounded_variables (None | Sequence[Variable] | Dict[str | Variable, str | int | slice | bool | float | Tensor | TensorValue | ObjectConstant | StateObjectReference] | Dict[str, Dict[str, StateObjectReference | slice | TensorValue]]) – the bounded variables to use. If None, the current bounded variables of the executor will be used.
csp (ConstraintSatisfactionProblem | None) – the constraint satisfaction problem to use. If None, the current CSP of the executor will be used.
sgc (CrowSGC | None) – the SGC (state-goal-constraints) context to use. If None, the current SGC context of the executor will be used.
optimistic_execution (bool) – whether to execute the expression optimistically (i.e., treat all CSP constraints True).
- Returns:
the TensorValue object.
- Return type:
TensorValue | slice | StateObjectReference | ListValue | None | Tuple[TensorValue | slice | StateObjectReference | ListValue | None, …]
- get_bounded_variable(variable)#
Get the value of a bounded variable.
- Parameters:
variable (Variable) – the variable.
- Returns:
the value of the variable.
- Return type:
- get_function_implementation(name)[source]#
Get the implementation of a function. When the executor does not have an implementation for the function, the implementation of the function in the domain will be returned. If that is also None, a KeyError will be raised.
- Parameters:
name (str) – the name of the function.
- Returns:
the implementation of the function.
- Return type:
- has_function_implementation(name)#
Check whether the executor has an implementation for a function.
- new_bounded_variables(bvdict)#
A context manager to add additional bounded variables to the executor.
- Parameters:
bvdict (None | Sequence[Variable] | Dict[str | Variable, str | int | slice | bool | float | Tensor | TensorValue | ObjectConstant | StateObjectReference] | Dict[str, Dict[str, StateObjectReference | slice | TensorValue]]) – the new bounded variables.
- parse(string, *, state=None, variables=None)[source]#
Parse an expression.
- Parameters:
expression – the expression to parse. When the input is already an expression, it will be returned directly.
string (str | Expression)
state (CrowState | None)
- Returns:
the parsed expression.
- Return type:
- register_function(name, func)#
Register an implementation for a function to the executor. Alias for
register_function_implementation()
.
- register_function_implementation(name, func)[source]#
Register an implementation for a function.
- Parameters:
name (str) – the name of the function.
func (Callable | CrowPythonFunctionRef | CrowPythonFunctionCrossRef) – the implementation of the function.
- retrieve_bounded_variable_by_name(name)#
Retrieve a bounded variable by its name.
- Parameters:
name (str) – the name of the variable.
- Returns:
the value of the variable.
- Return type:
- set_parser(parser)#
Set the parser for the executor.
- Parameters:
parser (ParserBase) – the parser.
- update_effect_mode(evaluation_mode, action_index=None)[source]#
- Parameters:
evaluation_mode (CrowFunctionEvaluationMode)
action_index (int | None)
- with_bounded_variables(bvdict)#
A context manager to set the bounded variables for the executor.
- Parameters:
bvdict (None | Sequence[Variable] | Dict[str | Variable, str | int | slice | bool | float | Tensor | TensorValue | ObjectConstant | StateObjectReference] | Dict[str, Dict[str, StateObjectReference | slice | TensorValue]]) – the bounded variables.
- with_csp(csp)[source]#
A context manager to temporarily set the CSP of the executor.
- Parameters:
csp (ConstraintSatisfactionProblem | None)
- with_sgc(sgc)[source]#
A context manager to temporarily set the SGC of the executor.
- Parameters:
sgc (CrowSGC | None)
- with_state(state=None)#
A context manager to temporarily set the state of the executor.
- Parameters:
state (TensorState | None)
- property bounded_variables: Dict[str, Dict[str, StateObjectReference | slice | TensorValue]]#
The bounded variables for the execution. Note that most of the time you should use the
get_bounded_variable()
method to get values for the bounded variable.
- property csp: ConstraintSatisfactionProblem | None#
The CSP that describes the constraints in past executions.
- property domain: CrowDomain#
The domain of the executor.
- property effect_update_from_execution: bool#
A context variable indicating whether the current effect should be updated from the execution of the operator.
- property effect_update_from_simulation: bool#
A context variable indicating whether the current effect should be updated from simulation, instead of the evaluation of expressions.
- property function_implementations: Dict[str, CrowPythonFunctionRef | CrowPythonFunctionCrossRef]#
The implementations of functions, which is a mapping from function names to implementations.
- property optimistic_execution: bool#
Whether to execute the expression optimistically (i.e., treat all CSP constraints True).
- property parser: ParserBase | None#
The parser for the domain.
- property pyobj_store: PyObjectStore#
The Python object store.
- property value_quantizer: ValueQuantizer#
The value quantizer.