concepts.pdsketch.operator.OperatorApplier#
- class OperatorApplier[source]#
Bases:
object
An operator applier is essentially a grounded operator, composed of an operator and its arguments.
Methods
pddl_str
()replace_arguments
(argument_map)Replace the arguments of the operator applier with a map from argument names to new arguments.
Attributes
Whether this operator is a macro operator.
The name of the operator.
The operator.
The arguments of the grounded operator.
The regression rule that generates this operator applier.
- __init__(operator, arguments, regression_rule=None)[source]#
Initialize an operator applier.
- Parameters:
operator (Operator | MacroOperator)
arguments (Sequence[str | Variable | UnnamedPlaceholder | TensorValue])
regression_rule (RegressionRuleApplier | None)
- __new__(**kwargs)#
- replace_arguments(argument_map)[source]#
Replace the arguments of the operator applier with a map from argument names to new arguments.
- Parameters:
argument_map (Mapping[str, Variable | UnnamedPlaceholder | TensorValue])
- Return type:
- arguments: Tuple[str | Variable | UnnamedPlaceholder | TensorValue, ...]#
The arguments of the grounded operator.
- operator: Operator | MacroOperator#
The operator.
- regression_rule: RegressionRuleApplier | None#
The regression rule that generates this operator applier. It is only used in the context of goal regression search.