Source code for concepts.dm.pdsketch.strips.atomic_strips_domain

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File   : atomic_strips_domain.py
# Author : Jiayuan Mao
# Email  : maojiayuan@gmail.com
# Date   : 04/27/2023
#
# This file is part of Project Concepts.
# Distributed under terms of the MIT license.

from typing import Optional, Union, Sequence, Tuple, Mapping, Dict

import jacinle
from jacinle.utils.cache import cached_property
from concepts.dsl.dsl_types import ObjectType, Variable, ObjectConstant
from concepts.dsl.expression import VariableExpression, FunctionApplicationExpression, BoolOpType, BoolExpression, AssignExpression, ConstantExpression, is_and_expr
from concepts.dm.pdsketch.predicate import Predicate
from concepts.dm.pdsketch.operator import Operator, OperatorApplicationExpression
from concepts.dm.pdsketch.regression_rule import AchieveExpression, RegressionRule
from concepts.dm.pdsketch.domain import Domain, Problem
from concepts.dm.pdsketch.parsers.pdsketch_parser import load_domain_file, load_domain_string, load_problem_file, load_problem_string
from concepts.dm.pdsketch.strips.strips_expression import SBoolPredicateApplicationExpression, SProposition, SState, SStateCompatible, make_sproposition_from_function_application


# TODO(Jiayuan Mao @ 2023/04/27): implement ADL operator.

[docs] class AtomicStripsOperator(object):
[docs] def __init__( self, arguments: Sequence[Variable], preconditions: Sequence[SBoolPredicateApplicationExpression], add_effects: Sequence[SBoolPredicateApplicationExpression], del_effects: Sequence[SBoolPredicateApplicationExpression], raw_operator: Operator ): self.name = raw_operator.name self.arguments = tuple(arguments) self.preconditions = tuple(preconditions) self.add_effects = tuple(add_effects) self.del_effects = tuple(del_effects) self.raw_operator = raw_operator
arguments: Tuple[Variable] """The arguments of the operator, as a tuple of :class:`~concepts.dsl.dsl_types.Variable`.""" preconditions: Tuple[SBoolPredicateApplicationExpression, ...] """The precondition of the operator, as a tuple of :class:`~concepts.dm.pdsketch.strips.strips_expression.SBoolPredicateApplicationExpression`.""" add_effects: Tuple[SBoolPredicateApplicationExpression, ...] """The add effects of the operator, as a tuple of :class:`~concepts.dm.pdsketch.strips.strips_expression.SBoolPredicateApplicationExpression`.""" del_effects: Tuple[SBoolPredicateApplicationExpression, ...] """The delete effects of the operator, as a tuple of :class:`~concepts.dm.pdsketch.strips.strips_expression.SBoolPredicateApplicationExpression`.""" raw_operator: Operator """The raw operator that this strips operator is derived from."""
[docs] def relax(self) -> 'AtomicStripsOperator': return type(self)( arguments=self.arguments, preconditions=self.preconditions, add_effects=self.add_effects, del_effects=[], raw_operator=self.raw_operator )
[docs] @classmethod def from_operator(cls, operator: Operator) -> 'AtomicStripsOperator': """Create a strips operator from a PDSketch operator. Args: operator: the PDSketch operator. Returns: the strips operator. """ arguments = operator.arguments preconditions = list() for precondition in operator.preconditions: precondition = precondition.bool_expr preconditions.append(SBoolPredicateApplicationExpression.from_function_application_expression(precondition)) add_effects = list() del_effects = list() for effect in operator.effects: effect = effect.assign_expr assert isinstance(effect, AssignExpression), f'Not supported assign expression: {effect}.' sassign = SBoolPredicateApplicationExpression.from_function_application_expression(effect.predicate) assert isinstance(effect.value, ConstantExpression), f'Not supported assign expression: {effect}.' value = effect.value.constant.item() assert isinstance(value, int) if value > 0.5: add_effects.append(sassign) else: del_effects.append(sassign) return cls(arguments, preconditions, add_effects, del_effects, operator)
def __str__(self) -> str: return f'{self.name}({", ".join(arg.name for arg in self.arguments)})' def __repr__(self) -> str: return f'StripsOperator({self.name}, arguments={self.arguments}, preconditions={self.preconditions}, {self.add_effects}, {self.del_effects})'
[docs] def to_applier_str(self, bound_arguments: Dict[str, str]): return self.name + '(' + ', '.join(f'{arg.name}={bound_arguments[arg.name]}' for arg in self.arguments) + ')'
[docs] def to_applier_pddl_str(self, bound_arguments: Dict[str, str]): return '(' + self.name + ' ' + ' '.join(bound_arguments[arg.name] for arg in self.arguments) + ')'
[docs] def ground(self, variable_dict: Dict[str, str], state: Optional[SStateCompatible] = None): # TODO(Jiayuan Mao @ 2023/04/27): include the state in the grounding. return AtomicStripsOperatorApplier(self, variable_dict)
[docs] def __call__(self, *args: str): assert len(args) == len(self.arguments), f'Expected {len(self.arguments)} arguments, got {len(args)}.' bound_arguments = {arg.name: argv for arg, argv in zip(self.arguments, args)} return self.ground(bound_arguments)
[docs] class AtomicStripsOperatorApplier(object):
[docs] def __init__(self, operator: AtomicStripsOperator, bound_arguments: Dict[str, str]): self.operator = operator self.arguments = tuple(bound_arguments[arg.name] for arg in operator.arguments) self.bound_arguments = bound_arguments self.preconditions = tuple(precondition.ground(bound_arguments, return_proposition=True) for precondition in operator.preconditions) self.add_effects = tuple(add_effect.ground(bound_arguments, return_proposition=True) for add_effect in operator.add_effects) self.del_effects = tuple(del_effect.ground(bound_arguments, return_proposition=True) for del_effect in operator.del_effects)
operator: AtomicStripsOperator """The operator that this applier is derived from.""" arguments: Tuple[str, ...] """The arguments of the operator, as a tuple of strings.""" bound_arguments: Dict[str, str] """The bound arguments of the operator.""" preconditions: Tuple[SProposition, ...] """The preconditions of the operator, as a tuple of :class:`~concepts.dm.pdsketch.strips.strips_expression.SProposition`.""" add_effects: Tuple[SProposition, ...] """The add effects of the operator, as a tuple of :class:`~concepts.dm.pdsketch.strips.strips_expression.SProposition`.""" del_effects: Tuple[SProposition, ...] """The delete effects of the operator, as a tuple of :class:`~concepts.dm.pdsketch.strips.strips_expression.SProposition`.""" def __str__(self) -> str: return f'{self.operator.name}({", ".join(f"{arg.name}={self.bound_arguments[arg.name]}" for arg in self.operator.arguments)})' __repr__ = jacinle.repr_from_str
[docs] class AtomicStripsOperatorApplicationExpression(object):
[docs] def __init__(self, operator: AtomicStripsOperator, arguments: Sequence[Variable]): self.operator = operator self.arguments = tuple(arguments)
operator: AtomicStripsOperator """The operator to be applied.""" arguments: Tuple[Variable, ...] """The arguments of the operator.""" def __str__(self) -> str: return f'{self.operator.name}({", ".join(arg.name if isinstance(arg, Variable) else arg for arg in self.arguments)})' __repr__ = jacinle.repr_from_str
[docs] @classmethod def from_operator_application_expression(cls, expression: OperatorApplicationExpression, atomic_strips_operators: Mapping[str, AtomicStripsOperator]) -> 'AtomicStripsOperatorApplicationExpression': """Create a strips operator application expression from a PDSketch operator application expression. Args: expression: the PDSketch operator application expression. Returns: the strips operator application expression. """ operator = atomic_strips_operators[expression.operator.name] arguments = list() for arg in expression.arguments: assert isinstance(arg, VariableExpression), f'Not supported argument expression: {arg}.' arguments.append(arg.variable) return cls(operator, arguments)
[docs] def ground(self, variable_dict: Dict[str, str], state: Optional[SStateCompatible] = None): return AtomicStripsOperatorApplier(self.operator, {arg.name: variable_dict[arg.name] for arg in self.arguments})
[docs] def __call__(self, *args): assert len(args) == len(self.arguments), f'Expected {len(self.arguments)} arguments, got {len(args)}.' bound_arguments = {arg.name: argv for arg, argv in zip(self.arguments, args)} return self.ground(bound_arguments)
[docs] class AtomicStripsAchieveExpression(object):
[docs] def __init__(self, goal: SBoolPredicateApplicationExpression, maintains: Sequence[SBoolPredicateApplicationExpression]): self.goal = goal self.maintains = tuple(maintains)
goal: SBoolPredicateApplicationExpression """The goal of the achieve expression.""" maintains: Tuple[SBoolPredicateApplicationExpression, ...] """A list of expression to be maintained.""" def __str__(self) -> str: return f'achieve({self.goal}, maintains={{{self.maintains}}})' __repr__ = jacinle.repr_from_str
[docs] @classmethod def from_achieve_expression(cls, expression: AchieveExpression) -> 'AtomicStripsAchieveExpression': """Create a strips achieve expression from a PDSketch achieve expression. Args: expression: the PDSketch achieve expression. Returns: the strips achieve expression. """ goal = SBoolPredicateApplicationExpression.from_function_application_expression(expression.goal) maintains = tuple(SBoolPredicateApplicationExpression.from_function_application_expression(maintain) for maintain in expression.maintains) return cls(goal, maintains)
[docs] def ground(self, variable_dict: Dict[str, str], state: Optional[SStateCompatible] = None): return AtomicStripsGroundedAchieveExpression( self.goal.ground(variable_dict, return_proposition=True), tuple(maintain.ground(variable_dict, return_proposition=True) for maintain in self.maintains) )
[docs] def __call__(self, *args): assert len(args) == len(self.arguments), f'Expected {len(self.arguments)} arguments, got {len(args)}.' bound_arguments = {arg.name: argv for arg, argv in zip(self.arguments, args)} return self.ground(bound_arguments)
[docs] class AtomicStripsGroundedAchieveExpression(object):
[docs] def __init__(self, goal: SProposition, maintains: Sequence[SProposition]): self.goal = goal self.maintains = tuple(maintains)
goal: SProposition """The goal of the achieve expression.""" maintains: Tuple[SProposition, ...] """A list of expression to be maintained.""" def __str__(self) -> str: return f'achieve({self.goal}, maintains={{{", ".join(map(str, self.maintains))}}})' __repr__ = jacinle.repr_from_str
[docs] class AtomicStripsRegressionRule(object):
[docs] def __init__( self, arguments: Sequence[Variable], preconditions: Sequence[SBoolPredicateApplicationExpression], goal: SBoolPredicateApplicationExpression, body: Sequence[Union[AtomicStripsOperatorApplicationExpression, AtomicStripsAchieveExpression]], raw_regression_rule: RegressionRule, ): self.name = raw_regression_rule.name self.arguments = tuple(arguments) self.preconditions = tuple(preconditions) self.goal = goal self.body = tuple(body) self.raw_regression_rule = raw_regression_rule
arguments: Tuple[Variable, ...] """The arguments of the regression rule.""" preconditions: Tuple[SBoolPredicateApplicationExpression, ...] """The preconditions of the regression rule.""" goal: SBoolPredicateApplicationExpression """The goal of the regression rule.""" body: Tuple[Union[AtomicStripsOperatorApplicationExpression, AtomicStripsAchieveExpression], ...] """The body of the regression rule.""" raw_regression_rule: RegressionRule """The raw regression rule.""" def __str__(self) -> str: return f'{self.goal} <- {", ".join(str(item) for item in self.body)}' __repr__ = jacinle.repr_from_str
[docs] @classmethod def from_regression_rule(cls, regression_rule: RegressionRule, atomic_strips_operators: Mapping[str, AtomicStripsOperator]): arguments = regression_rule.arguments preconditions = tuple(SBoolPredicateApplicationExpression.from_function_application_expression(precondition.bool_expr) for precondition in regression_rule.preconditions) goal_expression = regression_rule.goal_expression assert isinstance(goal_expression, BoolExpression) and goal_expression.bool_op is BoolOpType.AND sassign = SBoolPredicateApplicationExpression.from_function_application_expression(goal_expression.arguments[0]) body = [] for body_expression in regression_rule.body: if isinstance(body_expression, OperatorApplicationExpression): body.append(AtomicStripsOperatorApplicationExpression.from_operator_application_expression(body_expression, atomic_strips_operators)) elif isinstance(body_expression, AchieveExpression): body.append(AtomicStripsAchieveExpression.from_achieve_expression(body_expression)) else: raise NotImplementedError(f'Not supported body expression: {body_expression}.') return cls(arguments, preconditions, sassign, body, regression_rule)
[docs] def ground(self, variable_dict: Dict[str, str], state: Optional[SStateCompatible] = None): # TODO(Jiayuan Mao @ 2023/07/12): include the state in the grounding. return AtomicStripsRegressionRuleApplier(self, variable_dict)
[docs] def __call__(self, *args: str): assert len(args) == len(self.arguments), f'Expected {len(self.arguments)} arguments, got {len(args)}.' bound_arguments = {arg.name: argv for arg, argv in zip(self.arguments, args)} return self.ground(bound_arguments)
[docs] class AtomicStripsRegressionRuleApplier(object):
[docs] def __init__(self, regression_rule: AtomicStripsRegressionRule, bound_arguments: Dict[str, str]): self.regression_rule = regression_rule self.arguments = tuple(bound_arguments[arg.name] for arg in regression_rule.arguments) self.bound_arguments = bound_arguments self.preconditions = tuple(precondition.ground(bound_arguments, return_proposition=True) for precondition in regression_rule.preconditions) self.goal = regression_rule.goal.ground(bound_arguments, return_proposition=True) self.body = tuple(item.ground(bound_arguments) for item in regression_rule.body)
regression_rule: AtomicStripsRegressionRule """The regression rule.""" arguments: Tuple[str, ...] """The arguments of the operator, as a tuple of strings.""" bound_arguments: Dict[str, str] """The bound arguments of the operator.""" def __str__(self) -> str: return f'{self.regression_rule.name}({", ".join(f"{arg}={argv}" for arg, argv in self.bound_arguments.items())})' __repr__ = jacinle.repr_from_str
[docs] class AtomicStripsDomain(object): """The domain of the atomic STRIPS planning problem."""
[docs] def __init__(self, types: Dict[str, ObjectType], predicates: Dict[str, Predicate], operators: Dict[str, AtomicStripsOperator], regression_rules: Dict[str, AtomicStripsRegressionRule], constants: Dict[str, ObjectConstant]): self.types = types self.predicates = predicates self.operators = operators self.regression_rules = regression_rules self.constants = constants
types: Dict[str, ObjectType] """The types of the domain, as a dictionary from type name to :class:`~concepts.dm.pdsketch.strips.strips_expression.ObjectType`.""" predicates: Dict[str, Predicate] """The predicates of the domain, as a dictionary from predicate name to :class:`~concepts.dm.pdsketch.predicate.Predicate`.""" operators: Dict[str, AtomicStripsOperator] """The operators of the domain, as a dictionary from operator name to :class:`~concepts.dm.pdsketch.strips.atomic_strips_domain.AtomicStripsOperator`.""" regression_rules: Dict[str, AtomicStripsRegressionRule] """The regression rules of the domain, as a dictionary from regression rule name to :class:`~concepts.dm.pdsketch.strips.atomic_strips_domain.AtomicStripsRegressionRule`.""" constants: Dict[str, ObjectConstant] """The constants of the domain, as a dictionary from constant name to :class:`~concepts.dsl.dsl_types.ObjectConstant`."""
[docs] @classmethod def from_domain(cls, domain: Domain) -> 'AtomicStripsDomain': operators = dict() for operator in domain.operators.values(): if isinstance(operator, Operator): if operator.is_macro: continue # TODO(Jiayuan Mao @ 2023/03/19): support macro operator here. strips_operator = AtomicStripsOperator.from_operator(operator) operators[operator.name] = strips_operator regression_rules = dict() for regression_rule in domain.regression_rules.values(): strips_regression_rule = AtomicStripsRegressionRule.from_regression_rule(regression_rule, operators) regression_rules[regression_rule.name] = strips_regression_rule return cls( types=domain.types.copy(), predicates=domain.functions.copy(), operators=operators, regression_rules=regression_rules, constants=domain.constants.copy(), )
[docs] class AtomicStripsProblem(object):
[docs] def __init__(self, domain: AtomicStripsDomain, objects: Dict[str, str], initial_state: SStateCompatible, conjunctive_goal: Sequence[SProposition]): self.domain = domain self.objects = objects self.initial_state = SState(initial_state) self.conjunctive_goal = tuple(conjunctive_goal)
domain: AtomicStripsDomain """The domain of the problem, as a :class:`~concepts.dm.pdsketch.strips.strips_domain.AtomicStripsDomain`.""" objects: Dict[str, str] """The objects of the problem, as a dictionary from object name to object type.""" initial_state: SState """The initial state of the problem, as a :class:`~concepts.dm.pdsketch.strips.strips_expression.SState`.""" conjunctive_goal: Tuple[SProposition, ...] """The conjunctive goal of the problem, as a tuple of :class:`~concepts.dm.pdsketch.strips.strips_expression.SProposition`.""" @cached_property def objects_type2names(self) -> Dict[str, Tuple[str, ...]]: objects_type2names = dict() for name, type_ in self.objects.items(): objects_type2names.setdefault(type_, []).append(name) return {type_: tuple(names) for type_, names in objects_type2names.items()}
[docs] @classmethod def from_domain_and_problem(cls, domain: AtomicStripsDomain, problem: Problem) -> 'AtomicStripsProblem': objects = problem.objects.copy() for _, typename in objects.items(): if typename not in domain.types: raise ValueError(f'Unknown type {typename}.') initial_state = list() for proposition in problem.predicates: if proposition.function.name not in domain.predicates: raise ValueError(f'Unknown predicate {proposition.function.name}.') initial_state.append(make_sproposition_from_function_application(proposition, objects)) conjunctive_goal = list() if not is_and_expr(problem.goal): raise ValueError(f'Expected conjunctive goal, got {problem.goal}.') for proposition in problem.goal.arguments: if not isinstance(proposition, FunctionApplicationExpression): raise ValueError(f'Expected proposition, got {proposition}.') if proposition.function.name not in domain.predicates: raise ValueError(f'Unknown predicate {proposition.function.name}.') conjunctive_goal.append(make_sproposition_from_function_application(proposition, objects)) return cls( domain, objects=objects, initial_state=initial_state, conjunctive_goal=conjunctive_goal, )
[docs] def load_astrips_domain_file(filename: str, return_raw_domain: bool = False) -> Union[AtomicStripsDomain, Tuple[Domain, AtomicStripsDomain]]: """Load a strips domain from a domain file. Args: filename: the domain file. return_raw_domain: whether to return the raw domain. Returns: the strips domain, or a tuple of the raw domain and the strips domain. """ domain = load_domain_file(filename) strips_domain = AtomicStripsDomain.from_domain(domain) if return_raw_domain: return domain, strips_domain return strips_domain
[docs] def load_astrips_domain_string(domain_string: str, return_raw_domain: bool = False) -> Union[AtomicStripsDomain, Tuple[Domain, AtomicStripsDomain]]: """Load a strips domain from a domain string. Args: domain_string: the domain string. return_raw_domain: whether to return the raw domain. Returns: the strips domain, or a tuple of the raw domain and the strips domain. """ domain = load_domain_string(domain_string) strips_domain = AtomicStripsDomain.from_domain(domain) if return_raw_domain: return domain, strips_domain return strips_domain
[docs] def load_astrips_problem_file(domain: Domain, astrips_domain: AtomicStripsDomain, filename: str) -> AtomicStripsProblem: """Load a strips problem from a problem file. Args: domain: the domain of the problem. filename: the problem file. Returns: the strips problem. """ problem = load_problem_file(filename, domain=domain, return_tensor_state=False) return AtomicStripsProblem.from_domain_and_problem(astrips_domain, problem)
[docs] def load_astrips_problem_string(domain: Domain, astrips_domain: AtomicStripsDomain, problem_string: str) -> AtomicStripsProblem: """Load a strips problem from a problem string. Args: domain: the domain of the problem. problem_string: the problem string. Returns: the strips problem. """ problem = load_problem_string(problem_string, domain=domain, return_tensor_state=False) return AtomicStripsProblem.from_domain_and_problem(astrips_domain, problem)