Source code for concepts.pdsketch.crow.crow_planner_v2

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File   : crow_planner_v2.py
# Author : Jiayuan Mao
# Email  : maojiayuan@gmail.com
# Date   : 01/18/2024
#
# This file is part of Project Concepts.
# Distributed under terms of the MIT license.

import itertools
import jacinle

from typing import Any, Optional, Union, Iterator, Sequence, Tuple, List, Dict, NamedTuple
from concepts.dsl.constraint import OptimisticValue, ConstraintSatisfactionProblem
from concepts.dsl.dsl_types import QINDEX, ObjectConstant
from concepts.dsl.expression import ValueOutputExpression, is_and_expr
from concepts.dsl.executors.tensor_value_executor import BoundedVariablesDictCompatible
from concepts.pdsketch.executor import PDSketchExecutor, GeneratorManager
from concepts.pdsketch.simulator_interface import PDSketchSimulatorInterface
from concepts.pdsketch.domain import State
from concepts.pdsketch.operator import OperatorApplier
from concepts.pdsketch.regression_rule import RegressionRule, RegressionRuleApplier, AchieveExpression, BindExpression, RuntimeAssignExpression, RegressionCommitFlag
from concepts.pdsketch.regression_rule import SubgoalCSPSerializability
from concepts.pdsketch.planners.optimistic_search import ground_actions
from concepts.pdsketch.planners.optimistic_search_with_simulation import csp_dpll_sampling_solve_with_simulation
from concepts.pdsketch.csp_solvers.dpll_sampling import csp_dpll_sampling_solve
from concepts.pdsketch.crow.crow_state import TotallyOrderedPlan, PartiallyOrderedPlan
from concepts.pdsketch.regression_utils import has_optimistic_constant_expression, evaluate_bool_scalar_expression
from concepts.pdsketch.regression_utils import gen_applicable_regression_rules, len_candidate_regression_rules, gen_grounded_subgoals_with_placeholders
from concepts.pdsketch.regression_utils import map_csp_placeholder_goal, mark_constraint_group_solver, map_csp_placeholder_action, map_csp_placeholder_regression_rule_applier, map_csp_variable_state, map_csp_variable_mapping

__all__ = ['CROWPlanTreeNode', 'CROWSearchNode', 'CROWRecursiveSearcherV2', 'crow_recursive_v2']


[docs] class CROWPlanTreeNode(object):
[docs] def __init__(self, goal: PartiallyOrderedPlan, always: bool): self.goal = goal self.always = always self.children = [] self.parent = None
[docs] def add_child(self, child: Union['CROWPlanTreeNode', OperatorApplier, RegressionRuleApplier]): self.children.append(child) child.parent = self
[docs] def iter_actions(self): for child in self.children: if isinstance(child, CROWPlanTreeNode): yield from child.iter_actions() else: yield child
def __str__(self): fmt = f'CROWPlanTreeNode({self.goal} always={self.always})\n' for child in self.children: fmt += f'- {jacinle.indent_text(str(child)).lstrip()}\n' return fmt
[docs] class CROWSearchNode(object):
[docs] def __init__( self, state: State, goal_set: PartiallyOrderedPlan, constraints: Tuple[ValueOutputExpression, ...], csp: Optional[ConstraintSatisfactionProblem], plan_tree: Union[CROWPlanTreeNode, list], track_all_skeletons: bool, associated_regression_rule: Optional[RegressionRule] = None, is_top_level: bool = False, is_leftmost_branch: bool = False, is_all_always: bool = True, depth: int = 0, ): """Initialize search node for the CROW planner. Args: state: the current when the node is expanded. goal_set: the current goal (subgoal) to achieve. constraints: the constraints to be satisfied while achieving the goal. csp: the constraint satisfaction problem to be solved, associated with all the steps accumulated so far. plan_tree: the plan tree associated with the current node. track_all_skeletons: whether to track all the skeletons when we are refining the branch. associated_regression_rule: the regression rule associated with the current node. is_top_level: whether the current node is the top level node (directly instantiated from the goal). is_leftmost_branch: whether the current node is the leftmost branch of the search tree. is_all_always: whether all the subgoals from the root to the current node are [[always]]. depth: the depth of the current node. """ self.state = state self.goal = goal_set self.constraints = constraints self.csp = csp self.plan_tree = plan_tree self.track_all_skeletons = track_all_skeletons self.associated_regression_rule = associated_regression_rule self.is_top_level = is_top_level self.is_leftmost_branch = is_leftmost_branch self.is_all_always = is_all_always self.depth = depth
@property def previous_actions(self): if isinstance(self.plan_tree, CROWPlanTreeNode): return list(self.plan_tree.iter_actions()) return self.plan_tree
[docs] class PossibleSearchBranch(NamedTuple): state: State csp: Optional[ConstraintSatisfactionProblem] actions: List[OperatorApplier] csp_variable_mapping: Dict[int, Any] reg_variable_mapping: Dict[str, Any]
[docs] class SearchReturn(NamedTuple): state: State csp: Optional[ConstraintSatisfactionProblem] actions: List[OperatorApplier]
[docs] class CROWRecursiveSearcherV2(object):
[docs] def __init__( self, executor: PDSketchExecutor, state: State, goal_expr: Union[str, ValueOutputExpression], *, enable_reordering: bool = False, max_search_depth: int = 10, max_beam_size: int = 20, # Group 1: goal serialization and refinements. is_goal_serializable: bool = True, is_goal_refinement_compressible: bool = True, # Group 2: CSP solver. enable_csp: bool = True, max_csp_trials: int = 10, max_global_csp_trials: int = 100, max_csp_branching_factor: int = 5, use_generator_manager: bool = False, store_generator_manager_history: bool = False, # Group 3: simulation. enable_simulation: bool = False, simulator: Optional[PDSketchSimulatorInterface] = None, # Group 4: dirty derived predicates. enable_dirty_derived_predicates: bool = False, enable_greedy_execution: bool = False, allow_empty_plan_for_optimistic_goal: bool = False, verbose: bool = True ): """Initialize the CROW planner. Args: executor: the executor used to execute the expressions. state: the current state. goal_expr: the goal expression to achieve. enable_reordering: whether to enable reordering in regression rule applications. max_search_depth: the maximum search depth. max_beam_size: the maximum beam size when trying different refinements of the same goal. is_goal_serializable: whether the goal has been serialized. is_goal_refinement_compressible: whether the serialized goals are refinement-compressible (i.e., for each goal item, do we need to track all the skeletons?) enable_csp: whether to enable CSP solving. max_csp_trials: the maximum number of CSP trials. max_global_csp_trials: the maximum number of CSP trials for the global CSP (i.e., the CSP associated with the root node of the search tree.) max_csp_branching_factor: the maximum branching factor for CSP. use_generator_manager: whether to use the generator manager. store_generator_manager_history: whether to store the history of the generator calls in the generator manager. enable_simulation: whether to enable simulation in CSP solving. simulator: the simulator used for simulation. enable_dirty_derived_predicates: whether to enable dirty derived predicates. enable_greedy_execution: whether to enable greedy execution. allow_empty_plan_for_optimistic_goal: whether to allow empty plan for optimistic goal. verbose: whether to print verbose information. """ self.executor = executor self.state = state self.goal_expr = goal_expr if isinstance(self.goal_expr, str): self.goal_expr = executor.parse(self.goal_expr) self.max_search_depth = max_search_depth self.max_beam_size = max_beam_size self.enable_reordering = enable_reordering self.is_goal_serializable = is_goal_serializable self.is_goal_refinement_compressible = is_goal_refinement_compressible self.enable_simulation = enable_simulation self.simulator = simulator if self.enable_simulation and self.simulator is not None: # TODO(Jiayuan Mao @ 2024-01-22): after we perform partial grounding for the states, we probably need to update the initial state here. self.simulator.set_init_state(self.state) self.enable_csp = enable_csp self.max_csp_trials = max_csp_trials self.max_global_csp_trials = max_global_csp_trials self.max_csp_branching_factor = max_csp_branching_factor self.use_generator_manager = use_generator_manager self.store_generator_manager_history = store_generator_manager_history self.enable_dirty_derived_predicates = enable_dirty_derived_predicates self.enable_greedy_execution = enable_greedy_execution self.allow_empty_plan_for_optimistic_goal = allow_empty_plan_for_optimistic_goal self.verbose = verbose self._search_cache = dict() self._search_stat = {'nr_expanded_nodes': 0} if self.use_generator_manager: self._generator_manager = GeneratorManager(self.executor, store_history=self.store_generator_manager_history) else: self._generator_manager = None
@property def search_stat(self) -> Dict[str, Any]: return self._search_stat @property def generator_manager(self) -> Optional[GeneratorManager]: return self._generator_manager
[docs] def main(self) -> Tuple[list, dict]: if is_and_expr(self.goal_expr): if len(self.goal_expr.arguments) == 1 and self.goal_expr.arguments[0].return_type.is_list_type: goal_set = [self.goal_expr] else: goal_set = list(self.goal_expr.arguments) else: goal_set = [self.goal_expr] goal_set = PartiallyOrderedPlan([TotallyOrderedPlan( goal_set, return_all_skeletons_flags=[(not self.is_goal_refinement_compressible) for _ in goal_set], is_ordered=self.is_goal_serializable )]) candidate_plans = self.dfs(CROWSearchNode( self.state, goal_set, tuple(), csp=ConstraintSatisfactionProblem() if self.enable_csp else None, plan_tree=list(), track_all_skeletons=False, is_top_level=True, is_leftmost_branch=True, is_all_always=True, depth=0 )) candidate_plans = [actions for _, _, actions in candidate_plans] return candidate_plans, self._search_stat
[docs] @jacinle.log_function(verbose=False) def dfs(self, node: CROWSearchNode) -> Sequence[SearchReturn]: """The main entrance of the CROW planner.""" if self.verbose: jacinle.log_function.print('Current goal', node.goal, f'track_all_skeletons={node.track_all_skeletons}', f'previous_actions={node.previous_actions}') # jacinle.log_function.print('Current goal', node.goal, f'track_all_skeletons={node.track_all_skeletons}', f'previous_actions={node.previous_actions}') if (rv := self._try_retrieve_cache(node)) is not None: return rv if node.depth >= self.max_search_depth: jacinle.log_function.print(jacinle.colored('Warning: search depth exceeded.', color='red')) if self.verbose: import ipdb; ipdb.set_trace() self._search_stat['nr_expanded_nodes'] += 1 all_possible_plans = list() flatten_goals = list(node.goal.iter_goals()) if not has_optimistic_constant_expression(*flatten_goals) or self.allow_empty_plan_for_optimistic_goal: """If the current goal contains no optimistic constant, we may directly solve the CSP.""" rv, is_optimistic, new_csp = evaluate_bool_scalar_expression(self.executor, flatten_goals, node.state, dict(), node.csp, csp_note='goal_test') if rv: all_possible_plans.append(SearchReturn(node.state, new_csp, node.previous_actions)) if not is_optimistic: # If there is no optimistic value, we can stop the search from here. # note that even if `track_all_skeletons` is True, we still return here. # This corresponds to an early stopping behavior that defines the space of all possible plans. return self._return_with_cache(node, all_possible_plans) all_candidate_regression_rules = gen_applicable_regression_rules(self.executor, node.state, node.goal, node.constraints, return_all_candidates=node.track_all_skeletons) if len_candidate_regression_rules(all_candidate_regression_rules) == 0: return self._return_with_cache(node, all_possible_plans) if self.verbose: rows = list() for chain_index, subgoal_index, candidate_regression_rules in all_candidate_regression_rules: cur_goal = node.goal.chains[chain_index].sequence[subgoal_index] for rule_item in candidate_regression_rules: rows.append((cur_goal, rule_item[0])) jacinle.log_function.print('All candidate regression rules:') jacinle.log_function.print(jacinle.tabulate(rows, headers=['Goal', 'Rule'], tablefmt='rst')) for chain_index, subgoal_index, candidate_regression_rules in all_candidate_regression_rules: cur_goal, other_goals = node.goal.chains[chain_index].sequence[subgoal_index], node.goal.exclude(chain_index, subgoal_index) other_goals_track_all_skeletons = node.goal.chains[chain_index].get_return_all_skeletons_flag(subgoal_index) candidate_grounded_subgoals = gen_grounded_subgoals_with_placeholders(self.executor, node.state, cur_goal, node.constraints, candidate_regression_rules, enable_csp=self.enable_csp) if self.verbose: jacinle.log_function.print('Now trying to excluding goal', cur_goal) other_goals_plans: List[Tuple[State, Optional[ConstraintSatisfactionProblem], List[OperatorApplier]]] if len(other_goals) == 0: other_goals_plans = [(node.state, node.csp, node.plan_tree)] else: other_goals_plans = list() other_goals_plans_tmp = self.dfs(CROWSearchNode( node.state, other_goals, node.constraints, node.csp, node.plan_tree, track_all_skeletons=other_goals_track_all_skeletons, is_leftmost_branch=node.is_leftmost_branch, is_all_always=False, depth=node.depth + 1 )) for cur_state, cur_csp, cur_actions in other_goals_plans_tmp: rv, is_optimistic, new_csp = evaluate_bool_scalar_expression(self.executor, [cur_goal], cur_state, dict(), cur_csp, csp_note='goal_test_shortcut') if rv: all_possible_plans.append(SearchReturn(cur_state, new_csp, cur_actions)) if not is_optimistic: # another place where we stop the search and ignores the `track_all_skeletons` flag. continue other_goals_plans.append((cur_state, cur_csp, cur_actions)) if len(other_goals_plans) == 0 or len(candidate_grounded_subgoals) == 0: continue if len(other_goals) == 0: max_prefix_length = 0 else: max_prefix_length = 0 if not self.enable_reordering else max(x[2] for x in candidate_grounded_subgoals.values()) prefix_stop_mark = dict() for prefix_length in range(max_prefix_length + 1): for regression_rule_index, (rule, bounded_variables) in enumerate(candidate_regression_rules): grounded_subgoals, placeholder_csp, max_reorder_prefix_length = candidate_grounded_subgoals[regression_rule_index] if prefix_length > max_reorder_prefix_length or (regression_rule_index in prefix_stop_mark and prefix_stop_mark[regression_rule_index]): continue # If the "new" item to be added in the prefix is a Find expression, we should just skip this prefix length. if prefix_length > 0 and isinstance(grounded_subgoals[prefix_length - 1], BindExpression): continue if self.verbose: jacinle.log_function.print('Applying rule', rule, bounded_variables, 'for subgoal', cur_goal, 'under prefix length', prefix_length) # jacinle.log_function.print('Applying rule', rule, bounded_variables, 'for subgoal', cur_goal, 'under prefix length', prefix_length) if prefix_length == 0: start_csp_variable_mapping = dict() previous_possible_branches = ([PossibleSearchBranch(x[0], x[1], x[2], start_csp_variable_mapping, {}) for x in other_goals_plans]) else: previous_possible_branches = list() search_goals = self.apply_regression_rule_prefix(node, grounded_subgoals, placeholder_csp, prefix_length, bounded_variables) for new_chain_subgoals, new_chain_flags, new_csp, start_csp_variable_mapping, cur_reg_variable_mapping in search_goals: if len(new_chain_subgoals) == 0: previous_possible_branches = ([PossibleSearchBranch(x[0], x[1], x[2], start_csp_variable_mapping, cur_reg_variable_mapping) for x in other_goals_plans]) break cur_other_goals = other_goals.add_chain(new_chain_subgoals, new_chain_flags) cur_other_goals_track_all_skeletons = new_chain_flags[-1] if len(new_chain_flags) > 0 else node.track_all_skeletons previous_possible_branches.extend([PossibleSearchBranch(x[0], x[1], x[2], start_csp_variable_mapping, cur_reg_variable_mapping) for x in self.dfs(CROWSearchNode( node.state, cur_other_goals, node.constraints, new_csp, node.plan_tree, track_all_skeletons=cur_other_goals_track_all_skeletons, is_leftmost_branch=node.is_leftmost_branch, is_all_always=False, depth = node.depth + 1 ))]) if len(previous_possible_branches) == 0: if self.verbose: jacinle.log_function.print('Prefix planning failed!!! Stop.') # If it's not possible to achieve the subset of goals, then it's not possible to achieve the whole goal. # Therefore, this is a break, not a "continue". prefix_stop_mark[regression_rule_index] = True continue possible_branches = previous_possible_branches for i in range(prefix_length, len(grounded_subgoals)): item = grounded_subgoals[i] next_possible_branches = list() if isinstance(item, (AchieveExpression, BindExpression)): if not node.track_all_skeletons and item.refinement_compressible and len(possible_branches) > 1: # TODO(Jiayuan Mao @ 2023/12/06): implement this for the case of CSP solving --- we may need to keep multiple variable bindings! possible_branches = [min(possible_branches, key=lambda x: len(x.actions))] prev_next_possible_branches_length = 0 for branch_index, (cur_state, cur_csp, cur_actions, cur_csp_variable_mapping, cur_reg_variable_mapping) in enumerate(possible_branches): # prev_next_possible_branches_length = len(next_possible_branches) is_leftmost_branch = node.is_leftmost_branch and all(not isinstance(x, (AchieveExpression, RegressionRuleApplier)) for x in grounded_subgoals[:i]) if isinstance(item, AchieveExpression): new_csp = cur_csp.clone() if cur_csp is not None else None subgoal, new_csp_variable_mapping = map_csp_placeholder_goal(item.goal, new_csp, placeholder_csp, cur_csp_variable_mapping, cur_reg_variable_mapping) subgoal_track_all_skeletons_flag = not item.refinement_compressible or node.track_all_skeletons this_next_possible_branches = ([PossibleSearchBranch(x[0], x[1], x[2], new_csp_variable_mapping, cur_reg_variable_mapping) for x in self.dfs(CROWSearchNode( cur_state, PartiallyOrderedPlan.from_single_goal(subgoal, subgoal_track_all_skeletons_flag), node.constraints + item.maintains, new_csp, cur_actions, track_all_skeletons=subgoal_track_all_skeletons_flag, is_leftmost_branch=is_leftmost_branch, is_all_always=node.is_all_always and rule.always, depth = node.depth + 1 ))]) elif isinstance(item, RegressionRuleApplier): new_csp = cur_csp.clone() if cur_csp is not None else None subgoal, new_csp_variable_mapping = map_csp_placeholder_regression_rule_applier(item, new_csp, placeholder_csp, cur_csp_variable_mapping, cur_reg_variable_mapping) subgoal_track_all_skeletons_flag = node.track_all_skeletons this_next_possible_branches = ([PossibleSearchBranch(x[0], x[1], x[2], new_csp_variable_mapping, cur_reg_variable_mapping) for x in self.dfs(CROWSearchNode( cur_state, PartiallyOrderedPlan.from_single_goal(item, subgoal_track_all_skeletons_flag), node.constraints + item.maintains, cur_csp, cur_actions, track_all_skeletons=subgoal_track_all_skeletons_flag, is_leftmost_branch=is_leftmost_branch, is_all_always=node.is_all_always and rule.always, depth=node.depth + 1 ))]) elif isinstance(item, OperatorApplier): # TODO(Jiayuan Mao @ 2023/09/11): vectorize this operation, probably only useful when `track_all_skeletons` is True. new_csp = cur_csp.clone() if cur_csp is not None else None action, new_csp_variable_mapping = map_csp_placeholder_action(item, new_csp, placeholder_csp, cur_csp_variable_mapping, cur_reg_variable_mapping) succ, new_state = self.executor.apply(action, cur_state, csp=new_csp, clone=True, action_index=len(cur_actions)) if succ: this_next_possible_branches = [PossibleSearchBranch(new_state, new_csp, cur_actions + [action], new_csp_variable_mapping, cur_reg_variable_mapping)] else: self.executor.apply_precondition_debug(action, cur_state, csp=new_csp) if self.verbose: jacinle.log_function.print('Warning: action', action, 'failed.') this_next_possible_branches = [] elif isinstance(item, BindExpression) and item.is_object_bind_expression: variables = cur_reg_variable_mapping.copy() variables.update({x: QINDEX for x in item.variables}) rv = self.executor.execute(item.goal, cur_state, variables, csp=cur_csp) this_next_possible_branches = list() typeonly_indices_variables = list() typeonly_indices_values = list() for v in item.variables: if v.name not in rv.batch_variables: typeonly_indices_variables.append(v.name) typeonly_indices_values.append(range(len(node.state.object_type2name[v.dtype.typename]))) for indices in rv.tensor.nonzero(): for typeonly_indices in itertools.product(*typeonly_indices_values): new_reg_variable_mapping = cur_reg_variable_mapping.copy() for var in item.variables: if var.name in rv.batch_variables: new_reg_variable_mapping[var.name] = ObjectConstant( node.state.object_type2name[var.dtype.typename][indices[rv.batch_variables.index(var.name)]], var.dtype ) else: new_reg_variable_mapping[var.name] = ObjectConstant( node.state.object_type2name[var.dtype.typename][typeonly_indices[typeonly_indices_variables.index(var.name)]], var.dtype ) this_next_possible_branches.append(PossibleSearchBranch(cur_state, cur_csp, cur_actions, cur_csp_variable_mapping, new_reg_variable_mapping)) if item.refinement_compressible: break elif isinstance(item, BindExpression) and not item.is_object_bind_expression: if cur_csp is None: raise RuntimeError('FindExpression must be used with a CSP.') new_csp = cur_csp.clone() subgoal, new_csp_variable_mapping = map_csp_placeholder_goal(item.goal, new_csp, placeholder_csp, cur_csp_variable_mapping) with new_csp.with_group(subgoal) as group: rv = self.executor.execute(subgoal, cur_state, cur_reg_variable_mapping, csp=new_csp).item() if isinstance(rv, OptimisticValue): new_csp.add_equal_constraint(rv) mark_constraint_group_solver(self.executor, node.state, cur_reg_variable_mapping, group) this_next_possible_branches = [PossibleSearchBranch(cur_state, new_csp, cur_actions, new_csp_variable_mapping, cur_reg_variable_mapping)] elif isinstance(item, RuntimeAssignExpression): new_reg_variable_mapping = cur_reg_variable_mapping.copy() rv = self.executor.execute(item.value, cur_state, new_reg_variable_mapping, csp=cur_csp) new_reg_variable_mapping[item.variable] = rv this_next_possible_branches = [PossibleSearchBranch(cur_state, cur_csp, cur_actions, cur_csp_variable_mapping, new_reg_variable_mapping)] elif isinstance(item, RegressionCommitFlag): this_next_possible_branches = [PossibleSearchBranch(cur_state, cur_csp, cur_actions, cur_csp_variable_mapping, cur_reg_variable_mapping)] else: raise TypeError(f'Unknown item: {item}') # TODO(Jiayuan Mao @ 2024/01/23): this is a hack to handle partial observability, and execution-based constraints. # In general, there should be a more generic way to select if we can directly return. if self.enable_greedy_execution and node.is_all_always: if i == len(grounded_subgoals) - 1 or isinstance(grounded_subgoals[i + 1], (AchieveExpression, BindExpression)): found_plan = False for new_state, new_csp, new_actions, new_csp_variable_mapping in this_next_possible_branches: if len(new_actions) > 0: if self.verbose: jacinle.log_function.print(jacinle.colored('Greedy execution for', new_actions, color='green')) all_possible_plans.append(SearchReturn(new_state, new_csp, new_actions)) found_plan = True break if found_plan: break if self.enable_csp: commit_csp = False if isinstance(item, RegressionCommitFlag) and item.csp_serializability in (SubgoalCSPSerializability.FORALL, SubgoalCSPSerializability.SOME): commit_csp = True elif isinstance(item, (AchieveExpression, BindExpression)) and item.csp_serializability in (SubgoalCSPSerializability.FORALL, SubgoalCSPSerializability.SOME): commit_csp = True if commit_csp: for new_state, new_csp, new_actions, new_csp_variable_mapping in this_next_possible_branches: assignments = self.solve_csp(new_csp, self.max_csp_trials, actions=new_actions) if assignments is not None: new_state = map_csp_variable_state(new_state, new_csp, assignments) new_csp = ConstraintSatisfactionProblem() new_actions = ground_actions(self.executor, new_actions, assignments) new_csp_variable_mapping = map_csp_variable_mapping(new_csp_variable_mapping, node.csp, assignments) next_possible_branches.append((new_state, new_csp, new_actions, new_csp_variable_mapping)) else: next_possible_branches.extend(this_next_possible_branches) else: next_possible_branches.extend(this_next_possible_branches) if self.verbose: jacinle.log_function.print(f'Branch {branch_index + 1} of {len(possible_branches)} for {item} has {len(next_possible_branches) - prev_next_possible_branches_length} branches.') prev_next_possible_branches_length = len(next_possible_branches) possible_branches = next_possible_branches if self.verbose: jacinle.log_function.print(f'Finished search subgoal {i + 1} of {len(grounded_subgoals)}: {item}. Possible branches (length={len(possible_branches)}):') for x in possible_branches: if len(x[2]) > 0: action_string = '[' + ', '.join([str(x) for x in x[2]]) + ']' else: action_string = '[empty]' jacinle.log_function.print(jacinle.indent_text(action_string)) # TODO(Jiayuan Mao @ 2024/01/23): this is related to the hack above for the partial observability and execution-based constraints. if not node.track_all_skeletons and len(all_possible_plans) > 1: return self.postprocess_plans(node, all_possible_plans) if self.enable_dirty_derived_predicates: updated_possible_branches = list() for cur_state, cur_csp, cur_actions, _mapping in possible_branches: cur_state = self.apply_regression_rule_effect(cur_state, rule, bounded_variables) updated_possible_branches.append((cur_state, cur_csp, cur_actions, _mapping)) possible_branches = updated_possible_branches found_plan = False # TODO(Jiayuan Mao @ 2023/09/11): implement this via maintains checking. for cur_state, cur_csp, cur_actions, _, cur_reg_variable_mapping in possible_branches: rv, is_optimistic, new_csp = evaluate_bool_scalar_expression(self.executor, flatten_goals, cur_state, cur_reg_variable_mapping, csp=cur_csp, csp_note=f'subgoal_test: {"; ".join([str(x) for x in flatten_goals])}') if self.verbose: jacinle.log_function.print(f'Goal test for {[str(x) for x in cur_actions]} (optimistic={is_optimistic}): {rv}') if rv: if self.verbose: jacinle.log_function.print('Found a plan', [str(x) for x in cur_actions], 'for goal', node.goal) if self.enable_csp and is_optimistic and node.is_top_level: assignments = self.solve_csp(new_csp, self.max_global_csp_trials, actions=cur_actions) if assignments is not None: grounded_actions = ground_actions(self.executor, cur_actions, assignments) all_possible_plans.append(SearchReturn(cur_state, cur_csp, grounded_actions)) found_plan = True if self.verbose: jacinle.log_function.print(jacinle.colored('Global csp solving found a plan', [str(x) for x in grounded_actions], color='green')) else: if self.verbose: jacinle.log_function.print(jacinle.colored('Global csp solving failed for the plan', [str(x) for x in cur_actions], color='red')) else: all_possible_plans.append(SearchReturn(cur_state, new_csp, cur_actions)) found_plan = True if found_plan: # Since we have changed the order of prefix_length for-loop and the regression rule for-loop, # we need to use an additional dictionary to store whether we have found a plan for a particular regression rule. prefix_stop_mark[regression_rule_index] = True if not node.track_all_skeletons and len(all_possible_plans) > 1: return self.postprocess_plans(node, all_possible_plans) return self.postprocess_plans(node, all_possible_plans)
[docs] def apply_regression_rule_prefix( self, node: CROWSearchNode, grounded_subgoals, placeholder_csp: ConstraintSatisfactionProblem, prefix_length: int, bounded_variables: BoundedVariablesDictCompatible ) -> List[Tuple[ List[ValueOutputExpression], List[bool], Optional[ConstraintSatisfactionProblem], Dict[int, Any], Dict[str, Any] ]]: """Apply the regression rule for a prefix of the subgoal.""" start_csp_variable_mapping = dict() cur_reg_variable_mapping = dict() new_csp = node.csp.clone() if node.csp is not None else None new_chain_subgoals = list() new_chain_flags = list() candidate_rvs = [(new_chain_subgoals, new_chain_flags, new_csp, start_csp_variable_mapping, cur_reg_variable_mapping)] for i, item in enumerate(grounded_subgoals[:prefix_length]): next_candidate_rvs = list() inplace_update = True for new_chain_subgoals, new_chain_flags, new_csp, start_csp_variable_mapping, cur_reg_variable_mapping in candidate_rvs: if isinstance(item, AchieveExpression): subgoal, start_csp_variable_mapping = map_csp_placeholder_goal(item.goal, new_csp, placeholder_csp, start_csp_variable_mapping, cur_reg_variable_mapping) new_chain_subgoals.append(subgoal) new_chain_flags.append(not item.refinement_compressible or node.track_all_skeletons) elif isinstance(item, BindExpression): # TODO(Jiayuan Mao @ 2024/03/08): handle the case of FindExpression with CSP. if item.is_object_bind_expression: variables = {x: QINDEX for x in item.variables} rv = self.executor.execute(item.goal, node.state, variables, csp=new_csp) typeonly_indices_variables = list() typeonly_indices_values = list() for v in item.variables: if v.name not in rv.batch_variables: typeonly_indices_variables.append(v.name) typeonly_indices_values.append(range(len(node.state.object_type2name[v.dtype.typename]))) for indices in rv.tensor.nonzero(): for typeonly_indices in itertools.product(*typeonly_indices_values): new_reg_variable_mapping = cur_reg_variable_mapping.copy() for var in item.variables: if var.name in rv.batch_variables: new_reg_variable_mapping[var.name] = ObjectConstant( node.state.object_type2name[var.dtype.typename][indices[rv.batch_variables.index(var.name)]], var.dtype ) else: new_reg_variable_mapping[var.name] = ObjectConstant( node.state.object_type2name[var.dtype.typename][typeonly_indices[typeonly_indices_variables.index(var.name)]], var.dtype ) next_candidate_rvs.append((new_chain_subgoals, new_chain_flags, new_csp, start_csp_variable_mapping, new_reg_variable_mapping)) if item.refinement_compressible: break inplace_update = False else: # TODO(Jiayuan Mao @ 2023/12/06): implement this for bypassing FindExpressions that can be committed... subgoal, start_csp_variable_mapping = map_csp_placeholder_goal(item.goal, new_csp, placeholder_csp, start_csp_variable_mapping, cur_reg_variable_mapping) with new_csp.with_group(subgoal) as group: rv = self.executor.execute(subgoal, node.state, cur_reg_variable_mapping, csp=new_csp).item() if isinstance(rv, OptimisticValue): new_csp.add_equal_constraint(rv) mark_constraint_group_solver(self.executor, node.state, bounded_variables, group) elif isinstance(item, RuntimeAssignExpression): rv = self.executor.execute(item.value, node.state, cur_reg_variable_mapping, csp=new_csp) cur_reg_variable_mapping[item.variable] = rv elif isinstance(item, RegressionCommitFlag): continue else: raise TypeError(f'Unsupported item type {type(item)} in rule {item}.') if not inplace_update: candidate_rvs = next_candidate_rvs return candidate_rvs
[docs] def postprocess_plans(self, node, all_possible_plans): if len(all_possible_plans) == 0: if self.verbose: jacinle.log_function.print('No possible plans for goal', node.goal) return self._return_with_cache(node, all_possible_plans) # TODO(Jiayuan Mao @ 2023/11/19): add unique back. # unique_all_possible_plans = _unique_plans(all_possible_plans) unique_all_possible_plans = all_possible_plans if len(unique_all_possible_plans) != len(all_possible_plans): if self.verbose: jacinle.log_function.print('Warning: there are duplicate plans for goal', node.goal, f'({len(unique_all_possible_plans)} unique plans vs {len(all_possible_plans)} total plans)') # import ipdb; ipdb.set_trace() unique_all_possible_plans = sorted(unique_all_possible_plans, key=lambda x: len(x.actions)) return self._return_with_cache(node, unique_all_possible_plans)
[docs] def solve_csp(self, csp, max_csp_trials, actions=None): for _ in range(max_csp_trials): if not self.enable_simulation: assignments = csp_dpll_sampling_solve(self.executor, csp, generator_manager=self.generator_manager, max_generator_trials=self.max_csp_branching_factor, verbose=True) else: assert self.simulator is not None and actions is not None, 'If simulation is enabled, you must provide the simulator, the state, and the actions.' # NB(Jiayuan Mao @ 2024-01-22): state is actually not used in the csp_dpll_sampling_solve_with_simulation function. So, we just provide the initial state here. assignments = csp_dpll_sampling_solve_with_simulation(self.executor, self.simulator, csp, self.state, actions, generator_manager=self.generator_manager, max_generator_trials=self.max_csp_branching_factor, verbose=True) if assignments is not None: return assignments return None
[docs] def apply_regression_rule_effect(self, state, rule: RegressionRule, bounded_variables: BoundedVariablesDictCompatible): return self.executor.apply_effect(rule, state, bounded_variables=bounded_variables, clone=True)
def _return_with_cache(self, node: CROWSearchNode, rv): """The cache only works for previous_actions == []. That is, we only cache the search results that start from the initial state.""" goal_set, previous_actions = node.goal, node.previous_actions if len(previous_actions) == 0: goal_str = goal_set.gen_string() if goal_str not in self._search_cache: self._search_cache[goal_str] = rv return rv def _try_retrieve_cache(self, node: CROWSearchNode): goal_set, previous_actions = node.goal, node.previous_actions if len(previous_actions) == 0: goal_str = goal_set.gen_string() if goal_str in self._search_cache: return self._search_cache[goal_str] return None
[docs] def crow_recursive_v2( executor: PDSketchExecutor, state: State, goal_expr: Union[str, ValueOutputExpression], *, enable_reordering: bool = False, max_search_depth: int = 10, max_beam_size: int = 20, # Group 1: goal serialization and refinements. is_goal_serializable: bool = True, is_goal_refinement_compressible: bool = True, # Group 2: CSP solver. enable_csp: bool = True, max_csp_trials: int = 10, max_global_csp_trials: int = 100, max_csp_branching_factor: int = 5, use_generator_manager: bool = False, store_generator_manager_history: bool = False, # Group 3: simulation. enable_simulation: bool = False, simulator: Optional[PDSketchSimulatorInterface] = None, # Group 4: dirty derived predicates. enable_dirty_derived_predicates: bool = False, enable_greedy_execution: bool = False, allow_empty_plan_for_optimistic_goal: bool = False, verbose: bool = True, ): kwargs = { 'enable_reordering': enable_reordering, 'max_search_depth': max_search_depth, 'max_beam_size': max_beam_size, 'is_goal_serializable': is_goal_serializable, 'is_goal_refinement_compressible': is_goal_refinement_compressible, 'enable_csp': enable_csp, 'max_csp_trials': max_csp_trials, 'max_global_csp_trials': max_global_csp_trials, 'max_csp_branching_factor': max_csp_branching_factor, 'use_generator_manager': use_generator_manager, 'store_generator_manager_history': store_generator_manager_history, 'enable_simulation': enable_simulation, 'simulator': simulator, 'enable_dirty_derived_predicates': enable_dirty_derived_predicates, 'enable_greedy_execution': enable_greedy_execution, 'allow_empty_plan_for_optimistic_goal': allow_empty_plan_for_optimistic_goal, 'verbose': verbose } return CROWRecursiveSearcherV2(executor, state, goal_expr, **kwargs).main()