Source code for concepts.dm.crow.crow_domain

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# File   : crow_domain.py
# Author : Jiayuan Mao
# Email  : maojiayuan@gmail.com
# Date   : 03/15/2024
#
# This file is part of Project Concepts.
# Distributed under terms of the MIT license.

from typing import Any, Optional, Union, Sequence, List, Dict, TYPE_CHECKING

import torch
from jacinle.logging import get_logger

from concepts.dsl.dsl_types import TypeBase, AliasType
from concepts.dsl.dsl_types import ObjectType, PyObjValueType, TensorValueTypeBase, Variable, ObjectConstant
from concepts.dsl.dsl_types import VectorValueType, ScalarValueType, NamedTensorValueType
from concepts.dsl.dsl_types import BOOL, INT64, FLOAT32, STRING
from concepts.dsl.dsl_functions import Function, FunctionType, FunctionArgumentListType, FunctionReturnType
from concepts.dsl.dsl_domain import DSLDomainBase
from concepts.dsl.expression import Expression, ValueOutputExpression, NullExpression
from concepts.dsl.tensor_value import TensorValue
from concepts.dsl.tensor_state import NamedObjectTensorState

from concepts.dm.crow.controller import CrowController
from concepts.dm.crow.crow_function import CrowFeature, CrowFunction
from concepts.dm.crow.crow_generator import CrowGeneratorBase, CrowDirectedGenerator, CrowUndirectedGenerator
from concepts.dm.crow.behavior import CrowBehaviorOrderingSuite, CrowBehavior

if TYPE_CHECKING:
    from concepts.dm.crow.executors.crow_executor import CrowExecutor

logger = get_logger(__file__)

__all__ = ['CrowDomain', 'CrowProblem', 'CrowState']


[docs] class CrowDomain(DSLDomainBase): """The planning domain definition."""
[docs] def __init__(self, name: Optional[str] = None): """Initialize a planning domain. Args: name: The name of the domain. """ super().__init__(name) self.features = dict() self.functions = dict() self.controllers = dict() self.behaviors = dict() self.generators = dict() self.external_functions = dict() self.external_function_crossrefs = dict() self.external_function_implementation_files = list()
name: str """The name of the domain.""" types: Dict[str, Union[ObjectType, PyObjValueType, TensorValueTypeBase, AliasType]] """The types defined in the domain, as a dictionary from type names to types.""" functions: Dict[str, CrowFunction] """A mapping of functions: from function name to the corresponding :class:`~concepts.dm.crow.function.CrowFunction` class.""" features: Dict[str, CrowFeature] """A mapping of features: from feature name to the corresponding :class:`~concepts.dm.crow.feature.CrowFeature` class.""" controllers: Dict[str, CrowController] """A mapping of controllers: from controller name to the corresponding :class:`~concepts.dm.crow.controller.Controller` class.""" constants: Dict[str, ObjectConstant] """The constants defined in the domain, as a dictionary from constant names to values.""" behaviors: Dict[str, CrowBehavior] """A mapping of behaviors: from behavior name to the corresponding :class:`~concepts.dm.crow.behavior.CrowBehavior` class.""" generators: Dict[str, CrowGeneratorBase] """A mapping of generators: from generator name to the corresponding :class:`~concepts.dm.crow.generator.CrowGeneratorBase` class.""" external_functions: Dict[str, Function] """A mapping of external functions: from function name to the corresponding :class:`~concepts.dsl.dsl_functions.Function` class.""" external_function_crossrefs: Dict[str, str] """A mapping from function name to another function name. This is useful when defining one function as an derived function of another function.""" external_function_implementation_files: List[str] """A list of external function implementation files (e.g., Python libs that implements the external functions)."""
[docs] def set_name(self, name: str): """Set the name of the domain. Args: name: the new name of the domain. """ self.name = name
BUILTIN_TYPES = ['object', 'pyobject', 'bool', 'int64', 'float32', 'string', '__totally_ordered_plan__'] BUILTIN_NUMERIC_TYPES = { 'bool': BOOL, 'int64': INT64, 'float32': FLOAT32, 'string': STRING } BUILTIN_PYOBJ_TYPES = { '__behavior_body__': PyObjValueType('__behavior_body__', alias='__behavior_body__'), }
[docs] def clone(self, deep: bool = True): if deep: raise NotImplementedError('Deep cloning is not supported yet.') domain = CrowDomain(self.name) domain.types = self.types.copy() domain.functions = self.functions.copy() domain.features = self.features.copy() domain.controllers = self.controllers.copy() domain.constants = self.constants.copy() domain.behaviors = self.behaviors.copy() domain.generators = self.generators.copy() domain.external_functions = self.external_functions.copy() domain.external_function_crossrefs = self.external_function_crossrefs.copy() domain.external_function_implementation_files = self.external_function_implementation_files.copy() return domain
[docs] def define_type(self, typename, parent_name: Optional[Union[VectorValueType, ScalarValueType, str]] = 'object') -> Union[ObjectType, PyObjValueType, VectorValueType, ScalarValueType]: """Define a new type. Args: typename: the name of the new type. parent_name: the parent type of the new type, default to 'object'. Returns: the newly defined type. """ if typename == 'object': raise ValueError('Typename "object" is reserved.') elif typename in type(self).BUILTIN_TYPES: raise ValueError('Typename {} is a built-in type.'.format(typename)) assert isinstance(parent_name, (str, (VectorValueType, TypeBase))), f'Currently only support inheritance from builtin types: {type(self).BUILTIN_TYPES}.' if isinstance(parent_name, str): if parent_name == 'object': self.types[typename] = ObjectType(typename) elif parent_name == 'pyobject': dtype = PyObjValueType(typename) self.types[typename] = dtype self.declare_external_function(f'type::{typename}::equal', [dtype, dtype], BOOL) elif parent_name == 'int64': dtype = NamedTensorValueType(typename, INT64) self.types[typename] = dtype self.declare_external_function(f'type::{typename}::equal', [dtype, dtype], BOOL) elif parent_name == 'float32': dtype = NamedTensorValueType(typename, FLOAT32) self.types[typename] = dtype self.declare_external_function(f'type::{typename}::equal', [dtype, dtype], BOOL) elif parent_name == 'string': dtype = PyObjValueType(typename, parent_type=STRING) self.types[typename] = dtype self.declare_external_function(f'type::{typename}::equal', [dtype, dtype], BOOL) else: raise ValueError(f'Unknown parent type: {parent_name}.') elif isinstance(parent_name, VectorValueType): dtype = NamedTensorValueType(typename, parent_name) self.types[typename] = dtype self.declare_external_function(f'type::{typename}::equal', [dtype, dtype], BOOL) elif isinstance(parent_name, TypeBase): dtype = AliasType(typename, parent_name) self.types[typename] = dtype else: raise ValueError(f'Unknown parent type: {parent_name}.') return self.types[typename]
[docs] def has_type(self, typename: str): """Check whether a type exists. Args: typename: the name of the type. Returns: whether the type exists. """ if typename in type(self).BUILTIN_TYPES: return True if typename in type(self).BUILTIN_PYOBJ_TYPES: return True return typename in self.types
[docs] def get_type(self, typename: str) -> Union[ObjectType, PyObjValueType, VectorValueType, ScalarValueType, NamedTensorValueType]: """Get a type by name. Args: typename: the name of the type. Returns: the type with the given name. """ if typename == 'object': return ObjectType('object') elif typename == 'pyobject': return PyObjValueType('pyobject') if typename in type(self).BUILTIN_NUMERIC_TYPES: return type(self).BUILTIN_NUMERIC_TYPES[typename] elif typename in type(self).BUILTIN_PYOBJ_TYPES: return type(self).BUILTIN_PYOBJ_TYPES[typename] if typename not in self.types: raise ValueError(f'Unknown type: {typename}, known types are: {list(self.types.keys())}.') return self.types[typename].unwrap_alias()
[docs] def define_object_constant(self, name: str, typename: str) -> ObjectConstant: """Define a new object constant. Args: name: the name of the new constant. typename: the type of the new constant. Returns: the newly defined constant. """ if name in self.constants: raise ValueError(f'Constant {name} already exists.') self.constants[name] = ObjectConstant(name, self.get_type(typename)) return self.constants[name]
[docs] def define_feature( self, name: str, arguments: FunctionArgumentListType, return_type: FunctionReturnType = BOOL, *, derived_expression: Optional[ValueOutputExpression] = None, observation: Optional[bool] = None, state: Optional[bool] = None, default: Optional[Any] = None, ) -> CrowFeature: """Define a new feature. Args: name: the name of the new feature. arguments: the arguments of the new feature. return_type: the return type of the new feature. derived_expression: the derived expression of the new feature. observation: whether the new feature is an observation variable. state: whether the new feature is a state variable. default: the default value of the new feature. Returns: the newly defined feature. """ if name in self.features: raise ValueError(f'Feature {name} already exists.') feature = CrowFeature( name, FunctionType(arguments, return_type), derived_expression=derived_expression, observation=observation, state=state, default=default ) self.features[name] = feature return feature
[docs] def has_feature(self, name: str) -> bool: """Check whether a feature exists. Args: name: the name of the feature. Returns: whether the feature exists. """ return name in self.features
[docs] def get_feature(self, name: str) -> CrowFeature: """Get a feature by name. Args: name: the name of the feature. Returns: the feature with the given name. """ if name not in self.features: raise ValueError(f'Unknown feature: {name}.') return self.features[name]
[docs] def define_crow_function( self, name: str, arguments: FunctionArgumentListType, return_type: FunctionReturnType = BOOL, *, derived_expression: Optional[ValueOutputExpression] = None, generator_placeholder: bool = False, inplace_generators: Optional[Sequence[str]] = None, simulation: bool = False, execution: bool = False, is_generator_function: bool = False, ): """Define a new function. Args: name: the name of the new function. arguments: the arguments of the new function. return_type: the return type of the new function. derived_expression: the derived expression of the new function. generator_placeholder: whether the new function is a generator placeholder. inplace_generators: a list of generators that will be defined in-place for this function. simulation: whether the new function requires the up-to-date simulation state to evaluate. execution: whether the new function requires the up-to-date execution state to evaluate. is_generator_function: whether the new function is a generator function. Returns: the newly defined function. """ if name in self.functions: raise ValueError(f'Function {name} already exists.') function = CrowFunction( name, FunctionType(arguments, return_type, is_generator_function=is_generator_function), derived_expression=derived_expression, generator_placeholder=generator_placeholder, inplace_generators=inplace_generators, simulation=simulation, execution=execution ) self.functions[name] = function if function.derived_expression is not None: self.external_functions[name] = function return function
[docs] def has_function(self, name: str) -> bool: """Check whether a function exists. Args: name: the name of the function. Returns: whether the function exists. """ return name in self.functions
[docs] def get_function(self, name: str) -> CrowFunction: """Get a function by name. Args: name: the name of the function. Returns: the function with the given name. """ if name not in self.functions: raise ValueError(f'Unknown function: {name}.') return self.functions[name]
[docs] def define_controller(self, name: str, arguments: Sequence[Variable], effect_body: Optional[CrowBehaviorOrderingSuite] = None) -> CrowController: """Define a new controller. Args: name: the name of the new controller. arguments: the arguments of the new controller. effect_body: the effect body of the new controller. Returns: the newly defined controller. """ if name in self.controllers: raise ValueError(f'Controller {name} already exists.') controller = CrowController(name, arguments, effect_body=effect_body) self.controllers[name] = controller return controller
[docs] def has_controller(self, name: str) -> bool: """Check whether a controller exists. Args: name: the name of the controller. Returns: whether the controller exists. """ return name in self.controllers
[docs] def get_controller(self, name: str) -> CrowController: """Get a controller by name. Args: name: the name of the controller. Returns: the controller with the given name. """ if name not in self.controllers: raise ValueError(f'Unknown controller: {name}.') return self.controllers[name]
[docs] def define_behavior( self, name: str, arguments: Sequence[Variable], goal: Union[ValueOutputExpression, NullExpression], body: CrowBehaviorOrderingSuite, effect_body: CrowBehaviorOrderingSuite, heuristic: Optional[CrowBehaviorOrderingSuite] = None, minimize: Optional[ValueOutputExpression] = None, always: bool = False ): """Define a new behavior. Args: name: the name of the new behavior. arguments: the arguments of the new behavior. goal: the goal of the new behavior. body: the body of the new behavior. effect_body: the effect body of the new behavior. heuristic: the heuristic of the new behavior. minimize: the minimize condition of the new behavior. always: whether the new behavior is always "feasible". Returns: the newly defined behavior. """ if name in self.behaviors: raise ValueError(f'Behavior {name} already exists.') self.behaviors[name] = behavior = CrowBehavior( name, arguments, goal, body, effect_body=effect_body, heuristic=heuristic, minimize=minimize, always=always ) return behavior
[docs] def has_behavior(self, name: str) -> bool: return name in self.behaviors
[docs] def get_behavior(self, name: str) -> CrowBehavior: if name not in self.behaviors: raise ValueError(f'Behavior {name} not found.') return self.behaviors[name]
[docs] def define_generator( self, name: str, arguments: Sequence[Variable], certifies: Union[Sequence[Union[ValueOutputExpression, NullExpression]], Union[ValueOutputExpression, NullExpression]], inputs: Optional[Sequence[Variable]] = None, outputs: Optional[Sequence[Variable]] = None, priority: int = 0, simulation: bool = False, execution: bool = False ) -> CrowGeneratorBase: """Define a new generator. Args: name: the name of the new generator. arguments: the parameters of the new generator. certifies: the certified condition of the new generator. inputs: the input variables of the new generator. outputs: the output variables of the new generator. priority: the priority of the new generator. simulation: whether the new generator requires the up-to-date simulation state to evaluate. execution: whether the new generator requires the up-to-date execution state to evaluate. Returns: the newly defined generator. """ if name in self.generators: raise ValueError(f'Generator {name} already exists.') if not isinstance(certifies, (list, tuple)): certifies = [certifies] if inputs is None and outputs is None: generator = CrowUndirectedGenerator(name, arguments, certifies, priority=priority, simulation=simulation, execution=execution) else: assert inputs is not None and outputs is not None, 'Both inputs and outputs should be specified.' generator = CrowDirectedGenerator(name, arguments, certifies, inputs, outputs, priority=priority, simulation=simulation, execution=execution) self.generators[name] = generator return generator
[docs] def has_generator(self, name: str) -> bool: return name in self.generators
[docs] def get_generator(self, name: str) -> CrowGeneratorBase: if name in self.generators: return self.generators[name] raise ValueError(f'Generator {name} not found.')
[docs] def declare_external_function(self, function_name: str, argument_types: FunctionArgumentListType, return_type: FunctionReturnType, kwargs: Optional[Dict[str, Any]] = None) -> Function: """Declare an external function. Args: function_name: the name of the external function. argument_types: the argument types of the external function. return_type: the return type of the external function. kwargs: the keyword arguments of the external function. Supported keyword arguments are: - ``observation``: whether the external function is an observation variable. - ``state``: whether the external function is a state variable. """ if kwargs is None: kwargs = dict() self.external_functions[function_name] = CrowFunction(function_name, FunctionType(argument_types, return_type), **kwargs) return self.external_functions[function_name]
[docs] def declare_external_function_crossref(self, function_name: str, cross_ref_name: str): """Declare a cross-reference to an external function. This is useful when one function is an derived function of another function. Args: function_name: the name of the external function. cross_ref_name: the name of the cross-reference. """ self.external_function_crossrefs[function_name] = cross_ref_name
[docs] def add_external_function_implementation_file(self, file_path: str): """Add an external function implementation file. This is useful if we want to declare external functions directly in the domain file. Args: file_path: the path of the external function implementation file. """ self.external_function_implementation_files.append(file_path)
[docs] def parse(self, string: Union[str, Expression], state: Optional['State'] = None, variables: Optional[Sequence[Variable]] = None) -> Expression: """Parse a string into an expression. Args: string: the string to be parsed. variables: the variables to be used in the expression. Returns: the parsed expression. """ if isinstance(string, Expression): return string from concepts.dm.crow.parsers.cdl_parser import parse_expression return parse_expression(self, string, state=state, variables=variables)
[docs] def make_executor(self) -> 'CrowExecutor': """Make an executor for this domain.""" from concepts.dm.crow.executors.crow_executor import CrowExecutor return CrowExecutor(self)
[docs] def incremental_define(self, string: str): """Incrementally define new parts of the domain. Args: string: the string to be parsed and defined. """ from concepts.dm.crow.parsers.cdl_parser import load_domain_string_incremental return load_domain_string_incremental(self, string)
[docs] def print_summary(self, external_functions: bool = False, full_generators: bool = False): """Print a summary of the domain."""
# TODO(Jiayuan Mao @ 2024/03/15): implement this.
[docs] def post_init(self): """Post-initialization of the domain. This function should be called by the domain generator after all the domain definitions (predicates and operators) are done. Currently, the following post-initialization steps are performed: 1. Analyze the static predicates. """ self._analyze_static_predicates()
def _analyze_static_predicates(self): """Run static analysis on the predicates to determine which predicates are static.""" # TODO(Jiayuan Mao @ 2024/03/15): implement this. pass
[docs] class CrowProblem(object):
[docs] def __init__(self, domain: CrowDomain): self.domain = domain self.name = None self.objects = dict() self.state = None self.goal = None self.planner_options = dict()
[docs] def set_planner_option(self, key: str, value: Any): self.planner_options[key] = value
[docs] def get_state_or_init(self) -> 'CrowState': self.init_state() return self.state
[docs] @classmethod def from_state_and_goal(cls, domain: CrowDomain, state: 'CrowState', goal: Optional[Union[ValueOutputExpression, str]] = None): problem = cls(domain) problem.state = state problem.goal = goal return problem
[docs] def add_object(self, name: str, typename: str): self.objects[name] = typename
[docs] def init_state(self): if self.state is not None: return domain = self.domain self.state = CrowState.make_empty_state(domain, self.objects)
[docs] def set_goal(self, goal: Union[ValueOutputExpression, str]): self.goal = goal
[docs] class CrowState(NamedObjectTensorState):
[docs] @classmethod def make_empty_state(cls, domain: CrowDomain, objects: Dict[str, str]): object_names = list(objects.keys()) object_types = [domain.types[objects[name]] for name in object_names] state = cls(None, object_names, object_types) for feature_name, feature in domain.features.items(): if not feature.is_state_variable: continue return_type = feature.return_type if feature_name not in state.features: sizes = list() for arg_def in feature.arguments: sizes.append(len(state.object_type2name[arg_def.typename]) if arg_def.typename in state.object_type2name else 0) sizes = tuple(sizes) state.features[feature_name] = TensorValue.make_empty(return_type, [var.name for var in feature.arguments], sizes) if feature.default is not None: if isinstance(feature.default, (int, float)): state.features[feature_name].tensor.fill_(feature.default) return state
[docs] def batch_set_value(self, feature_name: str, value: Union[torch.Tensor, tuple, list]) -> None: if feature_name not in self.features: raise ValueError(f'Unknown feature: {feature_name}.') if not isinstance(value, torch.Tensor): value = torch.tensor(value, dtype=self.features[feature_name].tensor.dtype) self.features[feature_name].tensor = value
[docs] def fast_set_value(self, feature_name: str, indices: Sequence[str], value: Any): if feature_name not in self.features: raise ValueError(f'Unknown feature: {feature_name}.') indices = tuple(self.get_typed_index(arg) for arg in indices) self.features[feature_name].fast_set_index(indices, value)