Learning Reusable Manipulation Strategies

Jiayuan Mao

Tomás Lozano-Pérez

Joshua B. Tenenbaum

Leslie Pack Kaelbling

MIT CSAIL jiayuanm@mit.edu

A "strategy" for pick up the cylinder.

- Push to rotate.
- Exert force on one end so that it tilts.
- Move the bucket.

You might not be able to execute it robustly now, but you have some "*ideas*."

We aim to learn such "strategies" from a single demonstration and apply them compositionally.

Problem Formulation

We have a simulator for object manipulation, an initial state, and a goal.

State Space Initial State Set of Goal States Actions Transition Model

Low-Level State: Object poses, joint angles, velocities, etc. Low-Level Action: Joint position/velocity commands

Given a large enough amount of data and search budget, a general search algorithm can conceivably solve it.

Problem Formulation

We have a simulator for object manipulation & one demonstration.

Key idea: some manipulation "strategies" can be modeled by contact relationships among objects.

Let's talk about a familiar example: hook-using.

Support Support **Initial State** Cali. **Block** Floor Hand

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Floor

Many strategies can be represented this way.

We call these manipulation strategies "mechanisms."

Many strategies can be represented this way.

We call these manipulation strategies "mechanisms."

Mechanisms as sequence of contact mode families *generalizes.* We learn these mechanisms, and we *compose* them.

Edge: hold(P)

Hook: hold(B)

Lever: hold(P)

(P) Poke: h

CoM: support(P, B) Slope: support(B, S

Motion Planning

Torque Level

Task and Motion Planning

Torque Level Our system currently uses 6 operators involving interactions among at most 3 objects. But it can be easily extended to include more complex operators.

Task and Motion Planning

Task and Motion Planning with Mechanisms

Task and Motion Planning

Overview of the Framework

There are two learning problems:

- 1. Learning of the contact mode sequence.
- 2. Learning samplers for parameters of the contact modes: where to grasp, how to move, etc.

Single Demo

Contact Modes and Goals

Self-Play

Learned Contact Distributions Compositional Planning

Step 1: Recover Mode Sequences

There are two learning problems:

1. Learning of the contact mode sequence.

We will recover it from the single demonstration.

2. Learning samplers for parameters of the contact modes: where to grasp, how to move, etc.

Single Demo

Contact Modes and Goals

Self-Play

Learned Contact Distributions Compositional Planning

Step 2: Learn Mechanism-Specific Samplers

We will learn those samplers (parameter generators) from self-plays.

Self-Play with Randomly Sampled Objects and Poses

Learning Mechanisms Improves Efficiency

Method	Edge	Hook	Lever	Poking	CoM	Slope&Blocker
Basis Ops Only	$89.45{\scriptstyle\pm5.53}$	>600	$523.18{\scriptstyle\pm9.22}$	>600	$19.30{\pm}2.82$	>600
Ours (Macro+Sampler)	0.57 ±0.05	3.84 ±1.56	$1.55{\pm}0.29$	97.76 ±10.67	0.97 ±0.09	$\textbf{4.11}{\pm}0.94$

Learning Mechanisms Improves Efficiency

Goal: holding(plate)

Method	Edge	Hook	Lever	Poking	СоМ	Slope&Blocker
Basis Ops Only	$89.45{\scriptstyle\pm5.53}$	>600	$523.18{\scriptstyle\pm9.22}$	>600	$19.30{\pm}2.82$	>600
Ours (Macro+Sampler)	0.57 ±0.05	3.84 ±1.56	$1.55{\pm}0.29$	97.76 ±10.67	0.97 ±0.09	$\textbf{4.11}{\pm}0.94$

Learning Mechanisms Improves Efficiency

Goal: holding(plate)

Method	Edge	Hook	Lever	Poking	СоМ	Slope&Blocker
Basis Ops Only	$89.45{\scriptstyle\pm5.53}$	>600	$523.18{\scriptstyle\pm9.22}$	>600	$19.30{\pm}2.82$	>600
Ours (Macro+Sampler)	0.57 ±0.05	3.84 ±1.56	$1.55{\pm}0.29$	97.76 ±10.67	0.97 ±0.09	$\textbf{4.11}{\pm}0.94$

The learned mechanisms can be composed.

Goal: holding(box) The caliper is too flat to be grasped.

Goal: **on(box, ramp)** Box may slide down the ramp.

...and they can be deployed on physical robots.

Goal: **in(ball, bowl)** The robot uses the banana to hook.

...and they can be deployed on physical robots.

Goal: holding(plate) The robot pushes it to the edge.

Learning Reusable Manipulation Strategies

Key idea: manipulation *mechanisms* can be modeled by a sequence of contact relationships among objects.

- Principles:
 - contact mode sequences are generalizable.
 - learning specific samplers to accelerate planning.
- Advantages:
 - strong generalization.
 - strong compositionality.
 - strong extendability by including different basis operators.