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Model-Predictive Control
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Observations: “We Need Both”

The choice between policy and model depends on the context and the task
Many times, they need to be combined

Model-Predictive Control

“Model”

“Inference”

World

𝜋

Goal-Cond. Policies
𝜋 𝑠, 𝑔 → 𝑎

“Feed Forward”

Transition Models
𝑇 𝑠, 𝑎 → 𝑠′

“Search”

“Feed-Forward” Policy

𝜋: 𝑜, 𝑎 ∗

Observation
History

→ 𝑎

Action



𝜋 Policy
Specific Neural Nets, LLMs

Planner
Motion Planners

𝜋 Planner
“Task” Planning

Policy
Primitive “Skills”

𝜋 Planner
“Task” Planning

Policy
Primitive “Skills” 

Generating Waypoints

A Broad Class of “Hybrid” Systems

Planner
Low-Level MPC

e.g.,
Code-As-Policy
[Liang et al. 2022]

e.g.,
Text2Motion
[Lin et al. 2023]



Open Research Questions

Theory

How to mathematically describe all 
these combinations and their trade-
offs (e.g. the complexity)?

Practice

How to flexibly mix-and-match all 
these modules to build efficient and 
effective systems?



The Continuous Spectrum of Hybrid Systems
Today’s talk: a unified theory, starting with a “programming language”

Declarative Representations

Goal-Cond. Policies
𝜋 𝑠, 𝑔 → 𝑎

“Feed Forward”

Transition Models
𝜋 𝑠, 𝑎 → 𝑠′

“Search”

Imperative Representations



NAMO in the Crow Description Language: Basic Primitives
State: the state is represented as a set of
objects and relational features

object A, B, C: object

feature shape_of(o: object) -> vector

feature pos_of(o: object) -> vector

Primitive Action: parameterized “low-level”
controllers

controller move_path(t: list[vector])

controller attach(o: object)

G
C

B

A

S

“Navigation Among Movable Obstacles”
Reif and Sharir, 1985

Wilfong, 1988
Stilman and Kuffner, 2005

You are here



Directly Programmed Solution

behavior goto_v0(G):
  goal: agent_pos() == G
  body:

let path = find_path(agent_pos(), G)
    do move_path(path)

move A move C

global_goal: agent_pos() == (270, 50)

MAIN

move B

Imperative

Subroutine Calls

move Self

G
C

B

Aachieve pos_of(A) == (500, 100)
    achieve pos_of(B) == (500, 300)
    achieve pos_of(C) == (500, 500)

S

Like “Behavior Trees”
Mateas and Stern. 2002. “A Behavior Language for story-based believable agents”

Bagnell et al. 2012. “An Integrated System for Autonomous Robotics Manipulation”
Colledanchise and Ögren. 2018 “Behavior Trees in Robotics and AI”



Adding (Continuous) Variable Bindings
Imperative +Variable

behavior move_away(x: object, path):
  goal: not_blocking(x, p)
  body:

bind new_p: valid_pos(x, new_p)
    ...

behavior goto_v1(G: vector):
  goal: agent_pos() == G
  body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

move A move C

MAIN

move B

Subroutine Calls

move Self

S

G
C

B

A
achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)
do move_path(path)



Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
  goal: agent_pos() == G
  body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

move A move C

MAIN

move B

Subroutine Calls

move Self

G
C

B

A

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
  goal: not_blocking(x, p)
  body:

bind new_p: valid_pos(x, new_p)
    ...

do move_path(path)

S



Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
  goal: agent_pos() == G
  body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

G
C

B

A

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
  goal: not_blocking(x, p)
  body:

bind new_p: valid_pos(x, new_p)
    ...

do move_path(path)

S

move A move C

MAIN

move B move Self

move A move Bmove C move Self

Non-Deterministic Subroutine Calls



Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
  goal: agent_pos() == G
  body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

G
C

B

A

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
  goal: not_blocking(x, p)
  body:
    assert reachable(x)

bind new_p: valid_pos(x, new_p)
...

eff: pos_of(x) = new_p

do move_path(path)

S

move A move C

MAIN

move B move Self

move A move Bmove C move Self

Non-Deterministic Subroutine Calls



Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
  goal: agent_pos() == G
  body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
  goal: not_blocking(x, p)
  body:
    assert reachable(x)

bind new_p: valid_pos(x, new_p)
...

eff: pos_of(x) = new_p

do move_path(path)

G
C

B

A
Robot

S

move A move C

MAIN

move B move Self

move A move Bmove C move Self

Non-Deterministic Subroutine Calls



Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
  goal: agent_pos() == G
  body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
  goal: not_blocking(x, p)
  body:
    assert reachable(x)

bind new_p: valid_pos(x, new_p)
...

eff: pos_of(x) = new_p

do move_path(path)

move A move C

MAIN

move B move Self

move A move Bmove C move Self

Non-Deterministic Subroutine Calls

G
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A
Robot



Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
  goal: agent_pos() == G
  body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
  goal: not_blocking(x, p)
  body:
    assert reachable(x)

bind new_p: valid_pos(x, new_p)
...

eff: pos_of(x) = new_p

do move_path(path)



The Spectrum Between Imperative and Declarative
Imperative +Variables +Ordering

Insight 1: Behaviors = Generators of “non-deterministic subroutine calls”
+ Verifiers based on causal models



Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
  goal: agent_pos() == G
  body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

do move_path(path)

S

G
C

B

A

move A move C

MAIN

move B

Subroutine Calls

move Self



Adding More Recursive Subroutines
Imperative +Variables +Ordering

behavior goto_v2(G: vector):
  goal: agent_pos() == G
  body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

G
C

B

A

move A

MAIN

Subroutine Calls

move Self

goto X

move Cmove B

goto G

move Self

S

X



Adding More Recursive Subroutines
Imperative +Variables +Ordering

behavior goto_v2(G: vector):
  goal: agent_pos() == G
  body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)



Adding Flexible Promotion
Imperative +Variables +Ordering

behavior goto_v2(G: vector):
  goal: agent_pos() == G
  body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

+Promotion

move A

MAIN

Subroutine Calls

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X



Adding Flexible Promotion
Imperative +Variables +Ordering

behavior goto_v2(G: vector):
  goal: agent_pos() == G
  body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

+Promotion

move A

MAIN

Subroutine Calls

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X



Adding Flexible Promotion
Imperative +Variables +Ordering

behavior goto_v3(G: vector):
  goal: agent_pos() == G
  body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

promotable unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

+Promotion

move A

MAIN

Subroutine Calls

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X



Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

Ordered Ordered

Promotable

Serialized



Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

Unordered



Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

move to X move to G



Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
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move to X move to Gmove A move Cmove B



Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A
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move Self

goto X

move Cmove B

goto G
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move to X move to Gmove A move Cmove B



Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G
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move to X move to Gmove A move Bmove C



Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self
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move to X move to Gmove A move Cmove B



Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

move to X move to Gmove C move Amove B



Adding Flexible Promotion
Imperative +Variables +Ordering

behavior goto_v3(G: vector):
  goal: agent_pos() == G
  body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

promotable unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

+Promotion



The Spectrum Between Imperative and Declarative
Imperative +Variables +Ordering

Insight 1: Behaviors = Generators of “non-deterministic subroutine calls”
+ Verifies using causal models: pre- and post-conditions

Insight 2: Declarative = Imperative + Variable + Ordering + Promotion

Specifically, if you only denote:
• the variables needed
• the preconditions they need to satisfy
• no ordering information about how preconditions should be achieved
You get full declarative modeling

+Promotion



Reformulate Classical Formulations by “Language Feats.”

𝑹 = {𝒂}𝑴 = {Preconds}

PDDL Discrete Only Always Always

+Ordering +Promotion+Variables Binding

Do not support Support, but you can’t configure Support, and configurable



Reformulate Classical Formulations by “Language Feats.”

PDDL Discrete Only Always Always

HTN/HGN Discrete Only Always

GOLOG Discrete Only Manual
Interleaving

PDDLStream Always Always

CDL (Ours)

+Ordering +Promotion

Do not support Support, but you can’t configure Support, and configurable

+Variable Binding



Reformulate Classical Formulations by “Language Feats.”

PDDL Discrete Only Always Always

HTN/HGN Discrete Only Always

GOLOG Discrete Only Manual
Interleaving

PDDLStream Always Always

CDL (Ours)

+Ordering +Promotion

Do not support Support, but you can’t configure Support, and configurable

+Variable Binding

The Crow Planner:
Consumes the flexible representations
• Sound
• Probabilistically resolution complete



Application: Context-Specific Solution Strategies
G

C

B

A

G
C

B

A

SS

G

C

B

A

Mid Level: Closely related to the LP1 class in Stilman and Kuffner 2005,
“disconnected spaces can be connected by moving a single obstacle”



Application: Context-Specific Solution Strategies
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Context-Specific Strategies Improves Efficiency
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Context-Specific Strategies Improves Efficiency
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Theory: Planning Complexity of Problems

Promotable
Section 𝑴

Serialized Section 𝑹

Theorem (very informally): under serializability assumptions over R, the
planning complexity is bounded by 𝑛𝑂 𝑘 , where 𝑛 is the number of objects,
𝑘 is the maximum number of subgoals that would accumulate in 𝑀

Intuition: 𝑘 defines how easy it is to “serialize” a problem
• NAMO: 𝑘 is the number of obstacles that have “dependencies”

Closely Related to “Width” in Symbolic Planning and Neural Network Expressivity
Lipovetzky and Geffner. 2012. “Width and serialization of classical planning problems”

Mao et al. 2023. “What Planning Problem Can A Relational Neural Network Solve?”



Dirty Laundry

Theory
• The bound is not tight because it

treats all objects “uniformly”

• Ultimately, what we really want to is
to identify the “kernel” of the
problem

Practice
• Although we support description of

different solution strategies compactly,
• we do not know which one to apply

• Actually, this can be as hard as solving
the original problem



Conclusion

We provide a new framework for “how to plan more efficiently”
• Theory: characterize the hardness of a problem
• Practice: a framework for mix-and-match representations

Next: learning how to reason more efficiently
• learning to select the best strategy in context
• learning to form new strategies, by reasoning about different types of flexibilities

Principle: Using program semantics to characterize flexibilities in behaviors
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