
Hybrid Declarative-Imperative Representations
for Hybrid Discrete-Continuous Decision-Making

jiayuanm.com

jiayuanm@mit.edu

Chicago, USA

2024

Tomás Lozano-Pérez Leslie Pack KaelblingJiayuan Mao Joshua B. Tenenbaum

Structures of the “Robot Brain”

“Model”

“Inference”

World

𝜋

𝜋: 𝑜, 𝑎 ∗

Observation
History

→ 𝑎

Action

Model-Predictive Control

Structures of the “Robot Brain”

“Model”

“Inference”

World

𝜋

Goal-Cond. Policies
𝜋 𝑠, 𝑔 → 𝑎

“Feed Forward”

Transition Models
𝑇 𝑠, 𝑎 → 𝑠′

“Search”

“Feed-Forward” Policy

𝜋: 𝑜, 𝑎 ∗

Observation
History

→ 𝑎

Action

Observations: “We Need Both”

The choice between policy and model depends on the context and the task
Many times, they need to be combined

Model-Predictive Control

“Model”

“Inference”

World

𝜋

Goal-Cond. Policies
𝜋 𝑠, 𝑔 → 𝑎

“Feed Forward”

Transition Models
𝑇 𝑠, 𝑎 → 𝑠′

“Search”

“Feed-Forward” Policy

𝜋: 𝑜, 𝑎 ∗

Observation
History

→ 𝑎

Action

𝜋 Policy
Specific Neural Nets, LLMs

Planner
Motion Planners

𝜋 Planner
“Task” Planning

Policy
Primitive “Skills”

𝜋 Planner
“Task” Planning

Policy
Primitive “Skills”

Generating Waypoints

A Broad Class of “Hybrid” Systems

Planner
Low-Level MPC

e.g.,
Code-As-Policy
[Liang et al. 2022]

e.g.,
Text2Motion
[Lin et al. 2023]

Open Research Questions

Theory

How to mathematically describe all
these combinations and their trade-
offs (e.g. the complexity)?

Practice

How to flexibly mix-and-match all
these modules to build efficient and
effective systems?

The Continuous Spectrum of Hybrid Systems
Today’s talk: a unified theory, starting with a “programming language”

Declarative Representations

Goal-Cond. Policies
𝜋 𝑠, 𝑔 → 𝑎

“Feed Forward”

Transition Models
𝜋 𝑠, 𝑎 → 𝑠′

“Search”

Imperative Representations

NAMO in the Crow Description Language: Basic Primitives
State: the state is represented as a set of
objects and relational features

object A, B, C: object

feature shape_of(o: object) -> vector

feature pos_of(o: object) -> vector

Primitive Action: parameterized “low-level”
controllers

controller move_path(t: list[vector])

controller attach(o: object)

G
C

B

A

S

“Navigation Among Movable Obstacles”
Reif and Sharir, 1985

Wilfong, 1988
Stilman and Kuffner, 2005

You are here

Directly Programmed Solution

behavior goto_v0(G):
 goal: agent_pos() == G
 body:

let path = find_path(agent_pos(), G)
 do move_path(path)

move A move C

global_goal: agent_pos() == (270, 50)

MAIN

move B

Imperative

Subroutine Calls

move Self

G
C

B

Aachieve pos_of(A) == (500, 100)
 achieve pos_of(B) == (500, 300)
 achieve pos_of(C) == (500, 500)

S

Like “Behavior Trees”
Mateas and Stern. 2002. “A Behavior Language for story-based believable agents”

Bagnell et al. 2012. “An Integrated System for Autonomous Robotics Manipulation”
Colledanchise and Ögren. 2018 “Behavior Trees in Robotics and AI”

Adding (Continuous) Variable Bindings
Imperative +Variable

behavior move_away(x: object, path):
 goal: not_blocking(x, p)
 body:

bind new_p: valid_pos(x, new_p)
 ...

behavior goto_v1(G: vector):
 goal: agent_pos() == G
 body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

move A move C

MAIN

move B

Subroutine Calls

move Self

S

G
C

B

A
achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)
do move_path(path)

Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
 goal: agent_pos() == G
 body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

move A move C

MAIN

move B

Subroutine Calls

move Self

G
C

B

A

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
 goal: not_blocking(x, p)
 body:

bind new_p: valid_pos(x, new_p)
 ...

do move_path(path)

S

Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
 goal: agent_pos() == G
 body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

G
C

B

A

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
 goal: not_blocking(x, p)
 body:

bind new_p: valid_pos(x, new_p)
 ...

do move_path(path)

S

move A move C

MAIN

move B move Self

move A move Bmove C move Self

Non-Deterministic Subroutine Calls

Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
 goal: agent_pos() == G
 body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

G
C

B

A

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
 goal: not_blocking(x, p)
 body:
 assert reachable(x)

bind new_p: valid_pos(x, new_p)
...

eff: pos_of(x) = new_p

do move_path(path)

S

move A move C

MAIN

move B move Self

move A move Bmove C move Self

Non-Deterministic Subroutine Calls

Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
 goal: agent_pos() == G
 body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
 goal: not_blocking(x, p)
 body:
 assert reachable(x)

bind new_p: valid_pos(x, new_p)
...

eff: pos_of(x) = new_p

do move_path(path)

G
C

B

A
Robot

S

move A move C

MAIN

move B move Self

move A move Bmove C move Self

Non-Deterministic Subroutine Calls

Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
 goal: agent_pos() == G
 body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
 goal: not_blocking(x, p)
 body:
 assert reachable(x)

bind new_p: valid_pos(x, new_p)
...

eff: pos_of(x) = new_p

do move_path(path)

move A move C

MAIN

move B move Self

move A move Bmove C move Self

Non-Deterministic Subroutine Calls

G
C

B

A
Robot

Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
 goal: agent_pos() == G
 body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

behavior move_away(x: object, path):
 goal: not_blocking(x, p)
 body:
 assert reachable(x)

bind new_p: valid_pos(x, new_p)
...

eff: pos_of(x) = new_p

do move_path(path)

The Spectrum Between Imperative and Declarative
Imperative +Variables +Ordering

Insight 1: Behaviors = Generators of “non-deterministic subroutine calls”
+ Verifiers based on causal models

Adding Flexible Ordering
Imperative +Variables

behavior goto_v1(G: vector):
 goal: agent_pos() == G
 body:

bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

+Ordering

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

unordered:

do move_path(path)

S

G
C

B

A

move A move C

MAIN

move B

Subroutine Calls

move Self

Adding More Recursive Subroutines
Imperative +Variables +Ordering

behavior goto_v2(G: vector):
 goal: agent_pos() == G
 body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

G
C

B

A

move A

MAIN

Subroutine Calls

move Self

goto X

move Cmove B

goto G

move Self

S

X

Adding More Recursive Subroutines
Imperative +Variables +Ordering

behavior goto_v2(G: vector):
 goal: agent_pos() == G
 body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

Adding Flexible Promotion
Imperative +Variables +Ordering

behavior goto_v2(G: vector):
 goal: agent_pos() == G
 body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

+Promotion

move A

MAIN

Subroutine Calls

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

Adding Flexible Promotion
Imperative +Variables +Ordering

behavior goto_v2(G: vector):
 goal: agent_pos() == G
 body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

+Promotion

move A

MAIN

Subroutine Calls

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

Adding Flexible Promotion
Imperative +Variables +Ordering

behavior goto_v3(G: vector):
 goal: agent_pos() == G
 body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

promotable unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

+Promotion

move A

MAIN

Subroutine Calls

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

Ordered Ordered

Promotable

Serialized

Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

Unordered

Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

move to X move to G

Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

move to X move to Gmove A move Cmove B

Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

move to X move to Gmove A move Cmove B

Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

move to X move to Gmove A move Bmove C

Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

move to X move to Gmove A move Cmove B

Adding Flexible Promotion
Imperative +Variables +Ordering +Promotion

move A

MAIN

move Self

goto X

move Cmove B

goto G

move Self

G
C

B

A

S

X

move to X move to Gmove C move Amove B

Adding Flexible Promotion
Imperative +Variables +Ordering

behavior goto_v3(G: vector):
 goal: agent_pos() == G
 body:

bind waypoint: vector
achieve agent_pos() == waypoint
bind path = find_path(agent_pos(), G)

global_goal: agent_pos() == (270, 50)

promotable unordered:

do move_path(path)

achieve not_blocking(A, path)
achieve not_blocking(B, path)
achieve not_blocking(C, path)

+Promotion

The Spectrum Between Imperative and Declarative
Imperative +Variables +Ordering

Insight 1: Behaviors = Generators of “non-deterministic subroutine calls”
+ Verifies using causal models: pre- and post-conditions

Insight 2: Declarative = Imperative + Variable + Ordering + Promotion

Specifically, if you only denote:
• the variables needed
• the preconditions they need to satisfy
• no ordering information about how preconditions should be achieved
You get full declarative modeling

+Promotion

Reformulate Classical Formulations by “Language Feats.”

𝑹 = {𝒂}𝑴 = {Preconds}

PDDL Discrete Only Always Always

+Ordering +Promotion+Variables Binding

Do not support Support, but you can’t configure Support, and configurable

Reformulate Classical Formulations by “Language Feats.”

PDDL Discrete Only Always Always

HTN/HGN Discrete Only Always

GOLOG Discrete Only Manual
Interleaving

PDDLStream Always Always

CDL (Ours)

+Ordering +Promotion

Do not support Support, but you can’t configure Support, and configurable

+Variable Binding

Reformulate Classical Formulations by “Language Feats.”

PDDL Discrete Only Always Always

HTN/HGN Discrete Only Always

GOLOG Discrete Only Manual
Interleaving

PDDLStream Always Always

CDL (Ours)

+Ordering +Promotion

Do not support Support, but you can’t configure Support, and configurable

+Variable Binding

The Crow Planner:
Consumes the flexible representations
• Sound
• Probabilistically resolution complete

Application: Context-Specific Solution Strategies
G

C

B

A

G
C

B

A

SS

G

C

B

A

Mid Level: Closely related to the LP1 class in Stilman and Kuffner 2005,
“disconnected spaces can be connected by moving a single obstacle”

Application: Context-Specific Solution Strategies
G

C

B

A

G
C

B

A

SS

G

C

B

A

Context-Specific Strategies Improves Efficiency
G

C

B

A

G
C

B

A

SS

G

C

B

A

Context-Specific Strategies Improves Efficiency
G

C

B

A

G
C

B

A

SS

G

C

B

A

Context-Specific Strategies Improves Efficiency
G

C

B

A

G
C

B

A

SS

G

C

B

A

Theory: Planning Complexity of Problems

Promotable
Section 𝑴

Serialized Section 𝑹

Theorem (very informally): under serializability assumptions over R, the
planning complexity is bounded by 𝑛𝑂 𝑘 , where 𝑛 is the number of objects,
𝑘 is the maximum number of subgoals that would accumulate in 𝑀

Intuition: 𝑘 defines how easy it is to “serialize” a problem
• NAMO: 𝑘 is the number of obstacles that have “dependencies”

Closely Related to “Width” in Symbolic Planning and Neural Network Expressivity
Lipovetzky and Geffner. 2012. “Width and serialization of classical planning problems”

Mao et al. 2023. “What Planning Problem Can A Relational Neural Network Solve?”

Dirty Laundry

Theory
• The bound is not tight because it

treats all objects “uniformly”

• Ultimately, what we really want to is
to identify the “kernel” of the
problem

Practice
• Although we support description of

different solution strategies compactly,
• we do not know which one to apply

• Actually, this can be as hard as solving
the original problem

Conclusion

We provide a new framework for “how to plan more efficiently”
• Theory: characterize the hardness of a problem
• Practice: a framework for mix-and-match representations

Next: learning how to reason more efficiently
• learning to select the best strategy in context
• learning to form new strategies, by reasoning about different types of flexibilities

Principle: Using program semantics to characterize flexibilities in behaviors

	Slide 1: Hybrid Declarative-Imperative Representations for Hybrid Discrete-Continuous Decision-Making
	Slide 2: Structures of the “Robot Brain”
	Slide 3: Structures of the “Robot Brain”
	Slide 4: Observations: “We Need Both”
	Slide 5: A Broad Class of “Hybrid” Systems
	Slide 6: Open Research Questions
	Slide 7: The Continuous Spectrum of Hybrid Systems
	Slide 8: NAMO in the Crow Description Language: Basic Primitives
	Slide 9: Directly Programmed Solution
	Slide 10: Adding (Continuous) Variable Bindings
	Slide 11: Adding Flexible Ordering
	Slide 12: Adding Flexible Ordering
	Slide 13: Adding Flexible Ordering
	Slide 14: Adding Flexible Ordering
	Slide 15: Adding Flexible Ordering
	Slide 16: Adding Flexible Ordering
	Slide 17: The Spectrum Between Imperative and Declarative
	Slide 18: Adding Flexible Ordering
	Slide 19: Adding More Recursive Subroutines
	Slide 20: Adding More Recursive Subroutines
	Slide 21: Adding Flexible Promotion
	Slide 22: Adding Flexible Promotion
	Slide 23: Adding Flexible Promotion
	Slide 24: Adding Flexible Promotion
	Slide 25: Adding Flexible Promotion
	Slide 26: Adding Flexible Promotion
	Slide 27: Adding Flexible Promotion
	Slide 28: Adding Flexible Promotion
	Slide 29: Adding Flexible Promotion
	Slide 30: Adding Flexible Promotion
	Slide 31: Adding Flexible Promotion
	Slide 32: Adding Flexible Promotion
	Slide 33: The Spectrum Between Imperative and Declarative
	Slide 34: Reformulate Classical Formulations by “Language Feats.”
	Slide 35: Reformulate Classical Formulations by “Language Feats.”
	Slide 36: Reformulate Classical Formulations by “Language Feats.”
	Slide 37: Application: Context-Specific Solution Strategies
	Slide 38: Application: Context-Specific Solution Strategies
	Slide 39: Context-Specific Strategies Improves Efficiency
	Slide 40: Context-Specific Strategies Improves Efficiency
	Slide 41: Context-Specific Strategies Improves Efficiency
	Slide 42: Theory: Planning Complexity of Problems
	Slide 43: Dirty Laundry
	Slide 44: Conclusion
	Slide 45
	Slide 46: Implication 2: Complexity
	Slide 47: The Single Expansion Rule
	Slide 48: The Bare Search Algorithm
	Slide 49: Implication 3: More Flexible Representation of Skills
	Slide 50: 2.5: Complexity from the Verification Perspective
	Slide 51: Behaviors
	Slide 52: Behaviors

